
Sorcar: Property-Driven Algorithms
for Learning Conjunctive Invariants

Daniel Neider1(B), Shambwaditya Saha2, Pranav Garg3, and P. Madhusudan2

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
neider@mpi-sws.org

2 University of Illinois at Urbana-Champaing, Champaign, USA
3 Amazon Web Services, Seattle, USA

Abstract. We present a new learning algorithm Sorcar to synthesize
conjunctive inductive invariants for proving that a program satisfies its
assertions. The salient property of this algorithm is that it is property-
driven, and for a fixed finite set of n predicates, guarantees convergence
in 2n rounds, taking only polynomial time in each round. We implement
and evaluate the algorithm and show that its performance is favorable
to the existing Houdini algorithm (which is not property-driven) for
a class of benchmarks that prove data race freedom of GPU programs
and another class that synthesizes invariants for proving separation logic
properties for heap manipulating programs.

Keywords: Invariant synthesis · Machine learning · Horn-ICE
learning · Conjunctive formulas

1 Introduction

The deductive verification approach for proving imperative programs correct is
one of the most well-established and effective methods, and automating program
verification using this method has been studied extensively. This approach can
be seen as consisting of two parts: (a) writing inductive invariants in terms of
loop invariants, class invariants, and method contracts, and (b) proving that
these annotations are indeed correct using theorem proving. Automation of the
latter has seen tremendous progress in the last two decades through the identifi-
cation of decidable logical theories, theory combinations, heuristics for automati-
cally reasoning with quantified theories, and their realization using efficient SMT
solvers [5,34]. There has also been significant progress on automating the former
problem of discovering inductive invariants [3,7,8,12–20,23,24,27,32,40–43,48],
with varying degrees of success.

In this paper, we are interested in a class of or learning-based techniques for
invariant generation [8,16,20,48]. In this context, the invariant synthesis engine
is split into two components, a learner and a teacher, who work in rounds. In
each round, the teacher examines the invariant produced by the learner and
produces counterexamples that consist of concrete program configurations that
c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 323–346, 2019.
https://doi.org/10.1007/978-3-030-32304-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32304-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-32304-2_16

324 D. Neider et al.

show why the proposed formulas are not inductive invariants. The learner then
uses these concrete program configurations to synthesize new proposals for the
invariant, without looking at the program. The teacher, on the other hand, does
look at the program and produces counterexamples based on failed verification
attempts.

The choice to separate the learner and teacher—and not give the learner
access to the program—may seem strange at first. However, a rationale for this
choice has emerged over the years, and the above choice is in fact the de facto
approach for synthesis in various other domains, including program synthesis,
where it is usually called counter-example guided inductive synthesis [1,44,45].

Horn-ICE Learning. In a paper at CAV 2014, Garg et al. [20] studied the
above learning model and identified the precise form of counterexamples needed
for synthesizing invariants. Contrary to usual classification learning where one
is given positive and negative examples only, the authors argued that impli-
cation counterexamples (ICE) are needed, and coined the term ICE learning
for such a learning model. More recently, it has been recognized that program
verification problems can be cast as solving Horn implication constraints [22].
Consequently, the implication counterexamples returned by the teacher are nat-
urally Horn implications (Horn-ICE), involving concrete program configurations.
New algorithms for learning from such Horn counterexamples have recently been
studied [8,16].

Learning Conjunctions Over a Fixed Set of Predicates. While one can
potentially learn/synthesize invariants in complex logics, one technique that has
been particularly effective and scalable is to fix a finite set of predicates P
over the program configurations and only learn inductive invariants that can
be expressed as a conjunction of predicates over P. For particular domains of
programs and types of specifications, it is possible to identify classes of candidate
predicates that are typically involved in invariants (e.g., based on the code of
the programs and/or the specification), and learning invariants over such a class
of predicates has proven very effective. A prominent example is device drivers,
and Microsoft’s Static Driver Verifier [28,33] (specifically the underlying tool
Corral [29]) is an industry-strength tool that leverages exactly this approach.

In this paper, we are mainly motivated by two other domains where learning
conjunctive invariants is very effective. The first is the class of programs handled
by GPUVerify [6,9], which considers GPU programs, reduces the problem to a
sequential verification problem (by simulating two threads at each parallel fork),
and proceeds to find conjunctive invariants over a fixed set P of predicates to
prove the resulting sequential program correct. The second class is the class of
programs considered by Neider et al. [35], where the authors synthesize invari-
ants in order to prove the correctness of programs that dynamically update heaps
against specifications in separation logic. The verification engine in the former
is an SMT solver that returns concrete Horn-ICE counterexamples. In the lat-
ter, predicates involve inductively defined relations (such as a list-segment, the

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 325

Table 1. Comparison of Houdini [18] and Sorcar

Learning Property Complexity Maximum Final conjunct
algorithm driven? per round # rounds

Houdini No Polynomial |P| Largest set

Sorcar Yes Polynomial 2 · |P|

Bias towards weaker
invariants (smaller
sets of conjunctions)
involving only relevant
predicates

heaplet associated with it, or the set of keys stored in it), and validating veri-
fication conditions is undecidable in general. Hence, the verification engine is a
sound but incomplete verification engine (based on “natural proofs”) that returns
abstract counterexamples that can be interpreted to be Horn-ICE counterexam-
ples. In both domains, the set P consists of hundreds of candidate predicates,
which makes invariant synthesis challenging (as there are 2|P| possible conjunc-
tive invariants).

Houdini and Sorcar. The classical algorithm for learning conjunctive invari-
ants over a finite class of predicates is the Houdini algorithm [18], which mimics
the elimination algorithm for learning conjuncts in classical machine learning [26].
Houdini starts with a conjectured invariant that contains all predicates in P
and, in each round, uses information from a failed verification attempt to remove
predicates. The most salient aspect of the algorithm is that it is guaranteed to
converge to a conjunctive invariant, if one exists, in n = |P| rounds (which is
logarithmic in the number of invariants, as there are 2n of them). However, the
Houdini algorithm has disadvantages as well. Most notably, it is not property-
driven as it does not consider the assertions that occur in the program (which
is a consequence of the fact that it was originally designed to infer invariants of
unannotated programs). In fact, one can view the Houdini algorithm as a way of
computing the least fixed point in the abstract interpretation framework, where
the abstract domain consists of conjunctions over the candidate predicates.

In this paper, we develop a new class of learning algorithms for conjunctions,
named Sorcar1, that is property-driven.

The primary motivation to build a property-driven learning algorithm is to
explore invariant generation techniques that can be potentially more efficient in
proving programs correct. The Sorcar algorithm presented in this paper has the
following design features (also see Table 1). First, it is property-driven—in other
words, the algorithm tries to find conjunctive inductive invariants that are suffi-
cient to prove the assertions in the program. By contrast, Houdini computes the
tightest inductive invariant. Since Sorcar is property-driven, it can find weaker
inductive invariants (i.e., invariants with fewer conjuncts). Our intuition is that
by synthesizing weaker, property-driven invariants, we can verify programs more
efficiently.

1 Houdini and Sorcar were both magicians!

326 D. Neider et al.

Second, Sorcar guarantees that the number of rounds of interaction with
the teacher is still linear (2n rounds compared to Houdini’s promise of n rounds).
Third, Sorcar promises to do only polynomial amount of work in each round
(i.e., polynomial in n and in the number of current counterexamples), similar to
Houdini.

The Sorcar algorithm works, intuitively, by finding conjunctive invariants
over a set of relevant predicates R ⊆ P. This set is grown slowly (but monoton-
ically, as monotonic growth is crucial to ensure that the number of rounds of
learning is linear) by adding predicates only when they were found to be relevant
to prove assertions. More specifically, predicates are considered relevant based on
information gained from counterexamples of failed verification conditions that
involve assertions in the program. The precise mechanism of growing the set of
relevant predicates can vary, and we define four variants of Sorcar (e.g., choos-
ing all predicates that show promise of relevance or greedily choosing a minimal
number of relevant predicates). The Sorcar suite of algorithms is hence a new
class of property-driven learning algorithms for conjunctive invariants with dif-
ferent design principles.

Experimental Evaluation. We have implemented Sorcar as a Horn-ICE
learning algorithm on top of the Boogie program verifier [4] and have applied
it to verify both GPU programs for data races [6,9] and heap manipulating
programs against separation logic specifications [35]. To assess the performance
of Sorcar, we have compared it to the current state-of-the-art tools for these
programs, which use the Houdini algorithm. Though Sorcar did not work more
efficiently on every program, our empirical evaluation shows that it is overall
more competitive than Houdini. In summary, we found that (a) Sorcar worked
more efficiently overall in verifying these programs, and (b) Sorcar verified a
larger number of programs than Houdini did (for a suitably large timeout).

Related Work

Invariant synthesis lies at the heart of automated program verification. Over
the years, various techniques have been proposed, including abstract inter-
pretation [13], interpolation [32], IC3 [7], predicate abstraction [3], abductive
inference [14], as well as synthesis algorithms that rely on constraint solv-
ing [12,17,23,24]. Complementing these techniques are data-driven approaches
that are based on machine learning. Examples include Daikon [15] and Hou-
dini [18], the ICE learning framework [20] and its successor Horn-ICE learn-
ing [8,16], as well as numerous other techniques that employ machine learning
to synthesize inductive invariants [19,27,40–43,48].

One potentially interesting question is whether ICE/Horn-ICE algorithms
(and in particular, Houdini and Sorcar) are qualitatively related to algorithms
such as IC3 for synthesizing invariants. For programs with Boolean domains,
Vizel et al. [47] study this question and find that the algorithms are quite differ-
ent. In fact, the authors propose a new framework that generalizes both. In the

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 327

setting of this paper, however, there are too many differences to reconcile with:
(a) IC3 finds invariants by bounded symbolic exploration, forward from initial
configurations and backward from bad configurations (hence inherently unfold-
ing loops), while ICE/Horn-ICE algorithms do not do that, (b) ICE/Horn-ICE
algorithms instead use implication/Horn counterexamples, which can relate con-
figurations arbitrarily far away from initial or bad configurations, and there
seems to be no analog to this in IC3, (c) it is not clear how to restrict IC3
to finding invariants in a particular hypothesis class, such as conjunctions over
a particular set of predicates, (d) IC3 works very closely with a SAT solver,
whereas ICE/Horn-ICE algorithms are essentially independent, communicating
with the SAT/SMT engine only indirectly, and (e) we are not aware of any guar-
antees that IC3 can give in terms of the number of rounds/conjectures, whereas
the ICE/Horn-ICE algorithms Houdini and Sorcar give guarantees that are
linear in the number of predicates. We believe that the algorithms are in fact very
different, though more general algorithms that unify them would be interesting
to study.

Learning of conjunctive formulas has a long history. An early example is the
so-called elimination algorithm [26], which operates in the Probably Approxi-
mately Correct Learning model (PAC). Daikon [15] was the first technique to
apply the elimination algorithm in a software setting, learning likely invariants
from dynamic traces. Later, the popular Houdini [18] algorithm built on top of
the elimination algorithm to compute inductive invariants in a fully automated
manner. In fact, as Garg et al. [21] and later Ezudheen et al. [16] argued, Hou-
dini can be seen as a learning algorithm for conjunctive formulas in both the
ICE and the Horn-ICE learning framework.

Using Houdini to compute conjunctive invariants over a finite set of candi-
date predicates is extremely scalable and has been used with great success in
several practical settings. For example, Corral [29], which uses Houdini inter-
nally, has replaced Slam [2] and Yogi [36], and is currently shipped as part
of Microsoft’s industrial-strength Static Driver Verifier (SDV) [28,33]. GPUVer-
ify [6,9] is another example that uses Houdini with great success to prove race
freedom of GPU programs.

2 Background

In this section, we provide the background on learning-based invariant synthe-
sis. In particular, we briefly recapitulate the Horn-ICE learning framework (in
Sect. 2.1) and discuss the Houdini algorithm (in Sect. 2.2), specifically in the
context of the Horn-ICE framework.

To make the Horn-ICE framework mathematically precise, let P be the pro-
gram (with assertions) under consideration and C the set of all program config-
urations of P . Furthermore, let us fix a finite set P of predicates p : C → B over
the program configurations, where B = {true, false} is the set of Boolean values.
These predicates capture interesting properties of the program and serve as the
basic building blocks for constructing invariants. We assume that the values of

328 D. Neider et al.

these predicates can either be obtained directly from the program configurations
or that the program is instrumented with ghost variables that track the values
of the predicates at important places in the program (e.g., at the loop header
and immediately after the loop). As notational convention, we write c |= p if
p(c) = true and c �|= p if p(c) = false. Moreover, we lift this notation to formulas
ϕ over P (i.e., arbitrary Boolean combinations of predicates from P) and use
c |= ϕ (c �|= ϕ) to denote that c satisfies ϕ (c does not satisfy ϕ).

To simplify the presentation in the remainder of this paper, we use conjunc-
tions p1∧· · ·∧pn of predicates over P and the corresponding sets {p1, . . . , pn} ⊆ P
interchangeably. In particular, for a (sub-)set X = {p1, . . . , pn} ⊆ P of predicates
and a program configuration c ∈ C, we write c |= X if and only if c |= p1∧· · ·∧pn.

2.1 The Horn-ICE Learning Framework

The Horn-ICE learning framework [8,16] is a general framework for learning
inductive invariants in a black-box setting. We here assume without loss of gen-
erality that the task is to synthesize a single invariant. In the case of learning
multiple invariants, say at different program locations, one can easily expand
the given predicates to predicates of the form (pc = l) → p where pc refers to
the program counter, l is the location of an invariant in the program, and p ∈ P.
Learning a conjunctive invariant over this extended set of predicates then corre-
sponds to learning multiple conjunctive invariants at the various locations.

As sketched in Fig. 1, the Horn-ICE framework consists of two distinct
entities—the learner and the teacher—and proceeds in rounds. In each round,
the teacher receives a candidate invariant ϕ from the learner and checks whether
ϕ proves the program correct. Should ϕ not be adequate to prove the program
correct, the learner replies with a counterexample, which serves as a means to
correct inadequate invariants and guide the learner towards a correct one. More
precisely, a counterexample takes one of three forms:2

– If the pre-condition α of the program does not imply ϕ, then the teacher
returns a positive counterexample c ∈ C such that c |= α but c �|= ϕ.

– If ϕ does not imply the post-condition β of the program, then the teacher
returns a negative counterexample c ∈ C such that c |= ϕ but c �|= β.

– If ϕ is not inductive, then the teacher returns a Horn counterexample
({c1, . . . , cn}, c) ∈ 2C × C such that ci |= ϕ for each i ∈ {1, . . . , n} but c �|= ϕ.
(We encourage the reader to think of Horn counterexamples as constraints of
the form (c1 ∧ · · · ∧ cn) → c.)

A teacher who returns counterexamples as described above always enables
the learner to make progress in the sense that every counterexample it returns
is inconsistent with the current conjecture (i.e., it violates the current conjec-
ture). Moreover, the Horn-ICE framework requires the teacher to be honest,
meaning that each counterexample needs to be consistent with all inductive
2 By abuse of notation, we write c |= α (c �|= α) to denote that c satisfies (violates)

the formula α even if α contains predicates that do not belong to P.

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 329

Fig. 1. The Horn-ICE learning framework [8,16]

invariants that prove the program correct (i.e., the teacher does not rule out
possible solutions). Finally, note that such a teacher can indeed be built since
program verification can be stated by means of constrained Horn clauses [22].
When the candidate invariant does not make such clauses true, some Horn clause
failed, and the teacher can find a Horn counterexample using a logic solver (pos-
itive counterexamples arise when the left-hand-side of the Horn counterexample
is empty, while negative counterexamples arise when the left-hand-side has one
element and the-right-hand side is false).

The objective of the learner, on the other hand, is to construct a formula
ϕ over P from the counterexamples received thus far. For the sake of simplic-
ity, we assume that the learner collects all counterexamples in a data structure
S = (S+, S−, SH), called Horn-ICE sample, where

1. S+ ⊆ C is a finite set of positive counterexamples;
2. S− ⊆ C is a finite set of negative counterexamples; and
3. SH ⊆ 2C × C is a finite set of Horn counterexamples.

To measure the complexity of a sample, we define its size, denoted by |S|, to be
|S+| + |S−| + ∑

(L,c)∈SH
(|L| + 1).

Given a Horn-ICE sample S = (S+, S−, SH), the learner’s task is then to
construct a formula ϕ over P that is consistent with S in that

1. c |= ϕ for each c ∈ S+;
2. c �|= ϕ for each c ∈ S−; and
3. for each ({c1, . . . , cn}, c) ∈ SH , if ci |= ϕ for all i ∈ {1, . . . , n}, then c |= ϕ.

This task is called passive Horn-ICE learning, while the overall learning setup can
be though of as iterative (or online) Horn-ICE learning. In the special case that
the learner produces conjunctive formulas, we say that a set X ⊆ P is consistent
with S if and only if the corresponding conjunction

∧
p∈X p is consistent with S.

In general, the Horn-ICE learning framework permits arbitrary formulas over
the predicates as candidate invariants. In this paper, however, we exclusively
focus on conjunctive formulas (i.e., conjunctions of predicates from P). In fact,
conjunctive invariants form an important subclass in practice as they are suf-
ficient to prove many programs correct [18,35] (also see our experimental eval-
uation in Sect. 4). Moreover, one can design efficient learning algorithms for
conjunctive Boolean formulas, as we show next.

330 D. Neider et al.

2.2 Houdini as a Horn-ICE Learning Algorithm

Houdini [18] is a popular algorithm to synthesize conjunctive invariants in inter-
action with a theorem prover. For our purposes, however, it is helpful to think
of Houdini as an adaptation of the classical elimination algorithm [26] to the
Horn-ICE learning framework that is modified to account for Horn counterexam-
ples. To avoid confusion, we refer to algorithmic component that the Houdini
learning algorithm as the “elimination algorithm” and the implementation of the
elimination algorithm as a learner in the context of the Horn-ICE framework as
Houdini-ICE.

Let us now describe the elimination algorithm as it is used in the design
of Sorcar as well. Given a Horn-ICE sample S = (S+, S−, SH), the elimina-
tion algorithm computes the largest conjunctive formula X ⊆ P in terms of
the number of predicates in X (i.e., the semantically smallest set of program
configurations expressible by a conjunctive formula) that is consistent with S.
Starting with the set X = P of all predicates, the elimination algorithm proceeds
as follows:

1. The elimination algorithm removes all predicates p ∈ X from X that violate
a positive counterexample (i.e., there exists a positive counterexample c ∈ S+

such that c �|= p). The result is the unique largest set X of predicates—
alternatively the largest conjunctive formula—that is consistent with S+

(i.e., c |= X for all c ∈ S+).
2. The elimination algorithm checks whether all Horn counterexamples are sat-

isfied. If a Horn counterexample ({c1, . . . , cn}, c) ∈ SH is not satisfied, it
means that each program configuration ci of the left-hand-side satisfies X,
but the configuration c on the right-hand-side does not. However, X corre-
sponds to the semantically smallest set of program configurations expressible
by a conjunctive formula that is consistent with S+. Moreover, all program
configurations ci on the left-hand-side of the Horn counterexample also sat-
isfy X. Thus, the right-hand-side c necessarily has to satisfy X as well (oth-
erwise X would not satisfy the Horn counterexample). To account for this,
the elimination algorithm adds c as a new positive counterexample to S+.

3. The elimination algorithm repeats Steps 1 and 2 until a fixed point is reached.
Once this happens, X is the unique largest set of predicates that is consistent
with S+ and SH .

Finally, the elimination algorithm checks whether each negative counterexample
violates X (i.e., c �|= X for each c ∈ S−). If this is the case, X is the largest
set of predicates that is consistent with S; otherwise, no consistent conjunctive
formula exists. Note that the elimination algorithm does not learn from negative
counterexamples.

It is not hard to verify that the time the elimination algorithm spends in each
round is polynomial in the number of predicates and the size of the Horn-ICE
sample (provided predicates can be evaluated in constant time). If the elimina-
tion algorithm is employed in the iterative Horn-ICE setting (as Houdini-ICE),

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 331

it is guaranteed to converge in at most |P| rounds, or it reports that no conjunc-
tive invariant over P exists.

The property that Houdini-ICE converges in at most |P| rounds is of great
importance in practice. One can, for instance, in every round learn the smallest
set of conjuncts satisfying the sample, say using a SAT solver. Doing so would not
significantly increase the time taken for learning in each round (thanks to highly-
optimized SAT solvers), but the worst-case number of iterations to converge to
an invariant becomes exponential. An exponential number of rounds, however,
makes learning invariants often intractable in practice (we implemented such a
SAT-based learner, but it performed poorly on our set of benchmarks). Hence,
it is important to keep the number of iterations small when learning invariants.
Note that Houdini-ICE does not use negative examples to learn formulas and,
hence, is not property-driven (negative examples come from configurations that
lead to violating assertions). The Sorcar algorithm, which we describe in the
next section, has this feature and aims for potentially weaker invariants that are
sufficient to prove the assertions in the program. Note, however, that Houdini-
ICE is complete in the sense that it is guaranteed to find an inductive invariant
that proves the program correct against its assertions, if one exists that can be
expressed as a conjunction over the given predicates.

3 The Sorcar Horn-ICE Learning Algorithm

One disadvantage of Houdini-ICE is that it learns in each round the largest set
of conjuncts, independent of negative counterexamples, and, hence, independent
of the assertions and specifications in the program—in fact, it learns the seman-
tically smallest inductive invariant expressible as a set of conjuncts over P. As a
consequence, Houdini-ICE may spend a lot of time finding the tightest invari-
ant (involving many predicates) although a simpler and weaker invariant suffices
to prove the program correct. This motivates the development of our novel Sor-
car Horn-ICE learning algorithm for conjuncts, which is property-driven (i.e.,
it also considers the assertions in the program) and has a bias towards learning
conjunctions with a smaller number of predicates.

The salient feature of Sorcar is that it always learns invariants involving
what we call relevant predicates, which are predicates that have shown some
evidence to affect the assertions in the program. More precisely, we say that a
predicate is relevant if it evaluates to false on some negative counterexample
or on a program configuration appearing on the left-hand-side of a Horn coun-
terexample. This indicates that not assuming this predicate leads to an assertion
violation or the invariant not being inductive, and is hence deemed important
as a candidate predicate in the synthesized invariant. However, naively choosing
relevant predicates does, in general, lead to an exponential number of rounds.
Thus, Sorcar is designed to select relevant predicates carefully and requires at
most 2|P| rounds to converge to an invariant (which is twice the number that
Houdini-ICE guarantees). Moreover, the set of predicates learned by Sorcar
is always a subset of those learned by Houdini-ICE.

332 D. Neider et al.

Algorithm 1. The Sorcar Horn-ICE learning algorithm
1 Function Relevant-Predicates (N , H, X, R):
2 return a set of R′ ⊆ P of relevant predicates such that R′ \ R �= ∅;
3 end

4 Procedure Sorcar-Passive S = (S+, S−, SH), R:
5 Run the elimination algorithm to compute the set X = {p1, . . . , pn},

corresponding to the largest conjunctive formula
∧n

i=1 pi over P that is
consistent with S (abort if no such formula exists);

6 while X ∩ R is not consistent with S do
7 N ← ∅; // Stores inconsistent negative counterexamples
8 H ← ∅; // Stores inconsistent Horn counterexamples

9 foreach negative counterexample c ∈ S− not consistent with X ∩ R do
10 N ← N ∪ {c};
11 end
12 foreach Horn counterexample (L, c) ∈ SH not consistent with X ∩ R do
13 H ← H ∪ {(L, c)};
14 end

15 R ← R ∪ Relevant-Predicates (N , H, X, R);
16 end

17 return (X ∩ R, R);
18 end

19 static R ← ∅; // Stores relevant predicates across rounds

20 Procedure Sorcar-IterativeS:
21 (Y, R) ← Sorcar-PassiveS, R;
22 return Y ;
23 end

Algorithm1 presents the Sorcar Horn-ICE learner in pseudo code. In con-
trast to Houdini-ICE, it is not a purely passive learning algorithm but is divided
into a passive part (Sorcar-Passive) and an iterative part (Sorcar-Iterative),
the latter being invoked in every round of the Horn-ICE framework. More pre-
cisely, Sorcar-Iterative maintains a state in form of a set R ⊆ P in the course
of the iterative learning, which is empty in the beginning and used to accumulate
relevant predicates (Line 19). The exact choice of relevant predicates, however, is
delegated to an external function Relevant-Predicates. We treat this function
as a parameter for the Sorcar algorithm and discuss four possible implementa-
tions at the end of this section. Let us now present Sorcar in detail.

3.1 The Passive Sorcar Algorithm

Given a Horn-ICE sample S and a set R ⊆ P, Sorcar-Passive first constructs
the largest conjunction X ⊆ P that is consistent with S (Line 5). This con-
struction follows the elimination algorithm described in Sect. 2.2 and ensures

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 333

that X is consistent with all counterexamples in S. Since X is the largest set of
predicates consistent with S, it represents the smallest consistent set of program
configurations expressible as a conjunction over P. As a consequence, it follows
that X ∩ R—in fact, any subset of X—is consistent with S+. However, X ∩ R
might not be consistent with S− or SH . To fix this problem, Sorcar-Passive
collects all inconsistent negative counterexamples in a set N and all inconsis-
tent Horn counterexamples in a set H (Lines 7 to 14). Based on these two sets,
Sorcar-Passive then computes a set of relevant predicates, which it adds to R
(Line 15). As mentioned above, the exact computation of relevant predicates is
delegated to a function Relevant-Predicates, which we treat as a parameter.
The result of this function is a set R′ ⊆ P of predicates that needs to contain at
least one new predicate that is not yet present in R. Once such a set has been
computed and added to R, the process repeats (R grows monotonically larger)
until a consistent conjunctive formula is found. Then, Sorcar-Passive returns
both the conjunction X ∩R as well as the new set R of relevant predicates. Note
that the resulting conjunction is always a subset of the relevant predicates.

The condition of the loop in Line 6 immediately shows that the set X ∩ R
is consistent with the Horn-ICE sample S once Sorcar-Passive terminates.
The termination argument, however, is less obvious. To argue termination, we
first observe that X is consistent with each positive counterexample in S+ and,
hence, X ∩ R remains consistent with all positive counterexamples during the
run of Sorcar-Passive. Next, we observe that the termination argument is
independent of the exact choice of predicates added to R—in fact, the predicates
need not even be relevant in order to prove termination of Sorcar-Passive.
More precisely, since the function Relevant-Predicates is required to return
a set R′ ⊆ P that contains at least one new (relevant) predicate not currently
present in R, we know that R grows strictly monotonically. In the worst case, the
loop in Lines 6 to 16 repeats |P| times until R = P; then, X ∩ R = X, which is
guaranteed to be consistent with S by construction of X (see Line 5). Depending
on the implementation of Relevant-Predicates, however, Sorcar-Passive can
terminate earlier with a much smaller consistent set X ∩ R � X. Since the time
spent in each iteration of the loop in Lines 6 to 16 is proportional to |P| · |S| +
f(|S|), where f is a function capturing the complexity of Relevant-Predicates,
the overall runtime of Sorcar-Passive is in O(|P|2 · |S| + |P| · f(|S|)). This is
summarized in the following theorem.

Theorem 1 (Passive Sorcar algorithm). Given a Horn-ICE sample S
and a set R ⊆ P of relevant predicates, the passive Sorcar algorithm learns
a consistent set of predicates (i.e., a consistent conjunction over P) in time
O(|P|2 · |S| + |P| · f(|S|)) where f is a function capturing the complexity of the
function Relevant-Predicates.

Before we continue, let us briefly mention that the set of predicates returned
by Sorcar is always a subset of those returned by Houdini-ICE.

334 D. Neider et al.

3.2 The Iterative Sorcar Algorithm

Sorcar-Iterative maintains a state in form of a set R ⊆ P of relevant predi-
cates in the course of the learning process (Line 19). In each round of the Horn-
ICE learning framework, the learner invokes Sorcar-Iterative with the current
Horn-ICE sample S as input, which contains all counterexamples that the learner
has received thus far. Internally, Sorcar-Iterative calls Sorcar-Passive,
updates the set R, and returns a new conjunctive formula, which the learner
then proposes as new candidate invariant to the teacher. If Sorcar-Passive
aborts (because no conjunctive formula over P that is consistent with S exists),
so does Sorcar-Iterative.

To ease the presentation in the remainder of this section, let us assume that
the program under consideration can be proven correct using an inductive invari-
ant expressible as a conjunction over P. Under this assumption, the iterative
Sorcar algorithm identifies such an inductive invariant in at most 2|P| rounds,
as stated in the following theorem.

Theorem 2 (Iterative Sorcar algorithm). Let P be a program and P a
finite set of predicates over the configurations of P . When paired with an honest
teacher that enables progress, the iterative Sorcar algorithm learns an inductive
invariant (in the form of a conjunctive formula over P) that proves the program
correct in at most 2|P| rounds, provided that such an invariant exists.

Proof (of Theorem 2). We first observe that the computation of the set X in
Line 5 of Sorcar-Passive always succeeds. This is a direct consequence of the
honesty of the teacher (see Sect. 2.1) and the assumption that at least one induc-
tive invariant exists that is expressible as a conjunction over P. This observation
is essential as it shows that Sorcar-Iterative does not abort.

Next, recall that the teacher enables progress in the sense that every coun-
terexample is inconsistent with the current conjecture (see Sect. 2.1). We use this
property to argue that the number of iterations of Sorcar-Iterative has an
upper bound of at most 2|P|, which can be verified by carefully examining the
updates of X and R as counterexamples are added to the Horn-ICE sample S:

– If a positive counterexample c is added to S, then it is added because c �|=
X ∩ R (as the teacher enforces progress). This implies c �|= X, which in turn
means that there exists a predicate p ∈ X with c �|= p. In the subsequent
round of the passive Sorcar algorithm, p is no longer present in X (see
Line 5) and |X| decreases by at least one as a result.

– If a negative counterexample c is added to S, then it is added because c |=
X ∩ R (as the teacher enforces progress). This means that the set X remains
unchanged in the next iteration but at least one relevant predicate is added
to R in order to account for the new negative counterexample (Line 15). This
increases |R| by at least one.

– If a Horn counterexample ({c1, . . . , cn}, c) is added to S, then it is added
because ci |= X ∩ R for each i ∈ {1, . . . , n} but c �|= X ∩ R (as the teacher
enforces progress). In this situation, two distinct cases can arise:

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 335

1. If ({c1, . . . , cn}, c) is not consistent with X (i.e., ci |= X for each i ∈
{1, . . . , n} but c �|= X), the computation in Line 5 identifies and removes
a predicate p ∈ X with c �|= X in order to make X consistent with S.
This means that |X| decreases by at least one.

2. If ({c1, . . . , cn}, c) is consistent with X but not with X ∩ R, then X
remains unchanged. However, at least one new relevant predicate is added
to R in order to account for the new Horn counterexample (Line 15). This
means that |R| increases by at least one.

Thus, either |X| decreases or |R| increases by at least one.

In the worst case, Sorcar-Iterative arrives at a state with X = ∅ and R = P
(if it does not find an inductive invariant earlier). Since the algorithm starts with
X = P and R = ∅, this worst-case situation occurs after at most 2|P| iterations.

Let us now assume that Sorcar-Iterative indeed arrives at a state with
X = ∅ and R = P. Then, we claim that the result of Sorcar-Iterative, namely
X ∩ R = ∅, is an inductive invariant. To prove this claim, first recall that Theo-
rem 1 shows that Sorcar-Passive always learns a set of predicates that is consis-
tent with the given Horn-ICE sample S. In particular, Line 5 of Sorcar-Passive
computes the (unique) largest set X ⊆ P that is consistent with S. Second, we
know that every inductive invariant X� is consistent with S because the teacher
is honest. Thus, we obtain X� ⊆ X = ∅ and, hence, X� = X because both X
and X� are consistent with S and X is the largest consistent set. This means
that X is an inductive invariant because X� is one.

Note, however, that Sorcar-Iterative might terminate earlier, in which
case the current conjecture is an inductive invariant by definition of the Horn-
ICE framework. In summary, we have shown that Sorcar-Iterative terminates
in at most 2|P| iterations with an inductive invariant (if one is expressible as an
conjunctive formula over P). 	

Finally, let us note that Sorcar-Iterative can also detect if no inductive
invariant exists that is expressible as a conjunction over P. In this case, the
computation of X in Line 5 of Sorcar-Passive fails and the algorithm aborts.

3.3 Computing Relevant Predicates

In the following, we develop four different implementations of the function
Relevant-Predicates. All of these functions share the property that the search
for relevant predicates is limited to the set X \R because only predicates in this
set can help making X ∩ R consistent with negative and Horn counterexamples
(cf. Line 6 of Algorithm 1). Moreover, recall that we define a predicate to be rel-
evant if it evaluates to false on some negative counterexample or on a program
configuration appearing on the left-hand-side of a Horn counterexample. Intu-
itively, these are predicates in P that have shown some relevancy in the sense
that they can be used to establish consistency with the Horn-ICE sample.

Relevant-Predicates-Max. The function Relevant-Predicates-Max, shown
as Algorithm 2, computes the maximal set of relevant predicates from X \ R

336 D. Neider et al.

Algorithm 2. Computing the maximal set of relevant predicates
1 Function Relevant-Predicates-Max (N , H, X, R):
2 R′ ← ∅;
3 foreach negative counterexample c ∈ N do
4 R′ ← R′ ∪ {p ∈ X \ R | c �|= p};
5 end
6 foreach Horn counterexample ({c1, . . . , cn}, c) ∈ H do
7 R′ ← R′ ∪ ⋃n

i=1{p ∈ X \ R | ci �|= p};
8 end
9 return R′;

10 end

with respect to the negative counterexamples in N and the Horn counterex-
amples in H. To this end, it accumulates all predicates that evaluate to false
on a negative counterexample in N or on a program configuration appearing
on the left-hand-side of a Horn counterexample in H. The resulting set R′ can
be large, but X ∩ R′ is guaranteed to be consistent with N and H (because
each negative counterexample and each program configuration on the left-hand-
side of a Horn counterexample violates at least one predicates in R′, the latter
causing each Horn counterexample to be violated). Since X ∩ R was neither
consistent with N nor with H, and since R′ ⊆ X \ R, it follows that R′ must
contain at least one relevant predicate not in R, thus satisfying the requirement
of Relevant-Predicates. Finally, the runtime of Relevant-Predicates-Max is
in O(|P| · |S|) since X \ R ⊆ P, N ⊆ S−, and H ⊆ SH .

Relevant-Predicates-First. The function Relevant-Predicates-First is
shown as Algorithm 3. Its goal is to select a smaller set of relevant predicates
than Relevant-Predicates-Max, while giving the user some control over which
predicates to choose. More precisely, Relevant-Predicates-First selects for
each negative counterexample and each Horn counterexample only one relevant
predicate p ∈ X \ R. The exact choice is determined by a total ordering <P
over the predicates, which reflects a preference among predicates and which we
assume to be a priori given by the user. Using the same arguments as for the
function Relevant-Predicates-Max, it is not hard to verify that the resulting
set R′ contains at least one additional relevant predicate not in R and that
X ∩ R′ is consistent with N and H. Moreover, R′ clearly contains only a subset
of the predicates returned by Relevant-Predicates-Max. Again, the runtime is
in O(|P| · |S|).
Relevant-Predicates-Min. The function Relevant-Predicates-Min, shown
as Algorithm 4, takes the idea of Relevant-Predicates-First one step further
and computes a (not necessarily unique) minimum set of relevant predicates
with respect to N and H. It does so by means of a reduction to a well-known
optimization problem called minimum hitting set [25].3 For a collection

3 Note that the corresponding decision problem is NP-complete.

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 337

Algorithm 3. Computing relevant predicates based on a preference order-
ing
1 Function Relevant-Predicates-First (N , H, X, R):
2 Define a total order <P over P;
3 R′ ← ∅;
4 foreach negative counterexample c ∈ N do
5 R′ ← R′ ∪ {p} where p is the <P -smallest predicate with p ∈ X \ R and

c �|= p;
6 end
7 foreach Horn counterexample ({c1, . . . , cn}, c) ∈ H do
8 R′ ← R′ ∪ {p} where p is the <P -smallest predicate from the set⋃n

i=1{p ∈ X \ R | ci �|= p};
9 end

10 return R′;
11 end

Algorithm 4. Computing a minimal set of relevant predicates
1 Function Relevant-Predicates-Min (N , H, X, R):
2 For each c ∈ N , construct Ac := {p ∈ X \ R | c �|= p};
3 For each (L, c) ∈ H, construct A(L,c) := {p ∈ X \ R | ∃c′ ∈ L : c′ �|= p};

4 Compute a minimal hitting set R′ for the instance
Q := {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H} (e.g., using a SAT solver);

5 return R′;
6 end

{A1, . . . , A�} of finite sets, a set B is a hitting set if B ∩ Ai �= ∅ for all
i ∈ {1, . . . , �}, and the minimum hitting set problem asks to compute a hit-
ting set of minimum cardinality. In the first step of the reduction, the function
Relevant-Predicates-Min constructs for each negative counterexample c ∈ N
the set Ac of all predicates p ∈ X \ R violating c and for each Horn counterex-
ample (L, c) ∈ H the set A(L,c) of all predicates p ∈ X \ R violating some
program configuration c′ ∈ L. In a second step, it uses an exact algorithm
(e.g., a SAT solver) to find a minimum hitting set R′ for the problem instance
Q := {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H}. By construction of the sets Ac and
A(L,c), the resulting minimum hitting set R′ then is a minimum set of relevant
predicates guaranteeing that X ∩ R′ is consistent with N and H. Moreover, R′

contains at least one relevant predicate not in R. However, the downside of app-
roach is that it is not a polynomial time algorithm as the underlying decision
problem is NP-complete.

Relevant-Predicates-Greedy. The key idea underlying the function Relevant-
Predicates-Greedy, which is shown as Algorithm 5, is to replace the exact
computation of a minimum hitting set with a polynomial-time approxima-
tion algorithm. More precisely, Relevant-Predicates-Greedy implements a

338 D. Neider et al.

Algorithm 5. Greedily computing a “small” set of relevant predicates
1 Function Relevant-Predicates-Greedy (N , H, X, R):
2 For each c ∈ N , construct Ac := {p ∈ X \ R | c �|= p};
3 For each (L, c) ∈ H, construct A(L,c) := {p ∈ X \ R | ∃c′ ∈ L : c′ �|= p};

4 R′ ← ∅;
5 Q ← {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H};

6 while Q �= ∅ do
7 Pick p ∈ X \ (R ∪ R′) such that |{A ∈ Q | p ∈ A}| is maximal;
8 R′ ← R′ ∪ {p};
9 Q ← Q \ {A ∈ Q | p ∈ A};

10 end

11 return R′;
12 end

straightforward greedy heuristic that successively chooses predicates p ∈ X \ R
that have the largest number of a non-empty intersections with sets in Q. This
heuristic is essentially the dual of the well-known greedy algorithm for the min-
imum set cover problem [10] and guarantees to find a solution that is at most
logarithmically larger than the optimal one. Apart from being an approximation
of the minimal set, choosing relevant predicates greedily based on the number
of sets it hits also has a statistical bias (choosing predicates more commonly
occurring in the sets). Otherwise, except for a runtime in O(|P| · |S|2) and an
approximation factor of log |S|, Relevant-Predicates-Greedy shares the same
properties as the function Relevant-Predicates-Min.

4 Experimental Evaluation

To evaluate the performance of Sorcar, we implement a prototype, featuring
all four variants of Sorcar (as well as more heuristics, which we do not discuss
here).4 This prototype is built on top of the program verifier Boogie [4], which
natively supports Houdini and provides a so-called “Abstract-Houdini frame-
work” [46] on top of which we have implemented ICE/Horn-ICE algorithms,
including Sorcar. Consequently, Sorcar can easily be integrated into existing,
Boogie-based verification tool chains.

We compared Sorcar with two Houdini-based tools: GPUVerify [6,9], a
tool for checking data race freedom in GPU kernels, and a tool by Neider et
al. [35] for verifying programs that dynamically manipulate heaps against spec-
ifications in separation logic. Since separation logic is undecidable in general,
the latter tool is designed to work in tandem with a sound-but-incomplete ver-
ification engine rather than a complete decision procedure. To the best of our
knowledge, both tools are the best ones available for their respective domains.

4 The sources of Sorcar are publicly available at https://github.com/horn-ice/sorcar.

https://github.com/horn-ice/sorcar

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 339

We have evaluated our implementation on two benchmarks suites: the first
suite is shipped with GPUVerify, while the second is included in Neider et al.’s
tool. As both of these tools use Houdini, all benchmarks were already equipped
with a large number of predicates (often several hundred). We describe each
benchmark suite in more detail shortly.

The goal of our experimental evaluation was twofold: (a) to determine
whether Sorcar can prove programs correct that the Houdini-based tools can-
not (and vice versa) as well as (b) to assess the performance of Sorcar in
comparison to these two tools. Since one of the key design principles of Sor-
car is to improve verification by constructing weaker invariant (smaller sets of
conjuncts), we also report on the size of the invariants (number of conjuncts)
inferred by Sorcar and compare to the other tools.

Benchmarks and Compared Tools. The first benchmark suite originates
from GPUVerify [6,9] and was obtained from GPU kernels written in OpenCL
and CUDA. GPUVerify processes such programs automatically by means of a
complex process, involving sequentialization and compilation to the Boogie
programming language. After removing all programs that did not have loops or
recursion, this benchmark suite contained 287 programs.

GPUVerify proceeds in three stages. The first stage compiles an OpenCL
or CUDA program into a Boogie program. The second stage uses Houdini in
a custom version of Boogie to infer an inductive invariant; in this phase, the
assertions are in fact removed as Houdini is anyway agnostic to the property
being verified. Finally, the third phase substitutes the synthesized invariants,
inserts the assertions back into the Boogie program, and verifies it.

The second benchmark suite is taken from Neider et al. [35]. It consists of
62 heap manipulating programs, written in C and are equipped with specifica-
tions in Dryad, a dialect of separation logic that allows expressing second order
properties using recursive functions and predicates.

Neider et al.’s tool uses the following verification tool chain. First, an exten-
sion of VCC [11], called VCDryad [37], compiles the C code into a Boogie
program by unfolding recursive definitions, modeling heaplets as sets, and apply-
ing frame reasoning using a technique called natural proofs [31,37,38]. The tool
then poses the verification problem as an invariant synthesis problem over a class
of predicates that express complex properties of the heap (such as whether the
heaplets of two data structures are disjoint, whether a list is sorted, and so on).
Finally, Neider et al.’s tool uses Houdini to infer a loop invariant.

Note that the final phase of both tools is to synthesize a conjunctive invari-
ant over a fixed set of predicates using Houdini. In our experiments, we have
replaced Houdini with Sorcar.

Evaluation. All experiments were conducted on an Intel Xeon E7-8857 v2
CPU at 3, 6GHz, running Debian GNU/Linux 9.5. The timeout limit was
1200 s. So as to not clutter the following presentation too much, we only
report on the version of Sorcar that performed best: Sorcar-Max (using

340 D. Neider et al.

Relevant-Predicates-Max). Additionally, we briefly compare Sorcar-Max to
Sorcar-Greedy, the latter using Relevant-Predicates-Greedy.

Figures 2a and 2b compare Sorcar-Max and GPUVerify on the first bench-
mark suite consisting of GPU kernels. Figure 2a compares the time taken to
verify a program, while Fig. 2b compares the number of predicates in the final
invariant (there is only one loop invariant in these programs). As can be seen
from the figures, Sorcar-Max compares highly favorably in efficiency. Specifi-
cally, Sorcar-Max was able to verify 15 programs that GPUVerify could not
verify, whereas GPUVerify verified only 2 programs that Sorcar-Max could
not verify. Sorcar-Max was also able to show 9 programs to not have a con-
junctive invariant that GPUVerify could not (GPUVerify was not able to show
this for any program that Sorcar-Max could not). On programs that both
tools were able to verify (216 programs in total), Sorcar-Max took on average
34 s per program (and synthesized invariants with an average number of 12 pred-
icates). GPUVerify, on the other hand, took on average 89 s per program (and
synthesized invariants with an average number of 23 predicates).

Additionally (not depicted in the scatter plots), we increased the time limit
for programs that only one tool could verify from 1200 s to 3600 s. GPUVerify was
able to verify 8 additional programs within this time limit. Sorcar, on the other
hand, verified both programs that it had timed out on previously. Thus, with
this larger timeout, Sorcar was able to verify a proper superset of programs
that GPUVerify verified.

Figures 2c and 2d compare Sorcar-Max to the tool of Neider et al. [35]
on the second benchmark suite of programs with Dryad specifications. Again,
Sorcar-Max outperformed the Houdini-based tool. Specifically, Sorcar-
Max was able to verify 3 programs that Neider et al.’s tool could not verify,
whereas Neider et al.’s tool verified 2 programs that Sorcar-Max could not
verify. On programs that both tools were able to verify (57 programs in total),
Sorcar-Max took on average 20 s per program (and synthesized invariants with
an average number of 19 predicates). On the other hand, Neider et al.’s tool took
on average 45 s per program (and synthesized invariants with an average number
of 37 predicates).

Figures 2e and 2f compare Sorcar-Max and Sorcar-Greedy on both
benchmark suits. The latter was slightly slower overall, but synthesized invari-
ants with fewer predicates.

Comparison of Sorcar and Houdini-ICE. Close to the time of writing
the final version of this paper, we performed further experiments with Houdini-
ICE (i.e., an implementation of Houdini as a Horn-ICE learning algorithm
based on the elimination algorithm), as suggested by the reviewers. This allowed
us to force the number of counterexamples returned by Boogie in each round
to be the same for Sorcar and Houdini-ICE (a parameter over which we do
not have control in Boogie’s implementation of Houdini).

On the GPUVerify benchmark suite, Sorcar-Max verified 5 programs that
Houdini-ICE could not, whereas Houdini-ICE was able to verify 1 program
that Sorcar-Max could not. Houdini-ICE was also able to show 2 programs to

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 341

Fig. 2. Comparison of the time taken to verify a benchmark and the number of pred-
icates in the final invariant. Subfigures (a) and (b) compare Sorcar-Max and GPU-
Verify on the first benchmark suite. Subfigures (c) and (d) compare Sorcar-Max and
Neider et al.’s tool on the second benchmark suite. Subfigures (e) and (f) compare
Sorcar-Max and Sorcar-Greedy on both benchmark suites.

342 D. Neider et al.

not have a conjunctive invariant, which Sorcar-Max could not. On programs
that both were able to verify (233 programs in total), both algorithms performed
with similar times.

On the Dryad benchmark suite, Sorcar-Max was able to solve 1 more
program than Houdini-ICE (and verified all programs that Houdini-ICE ver-
ified). On the 59 programs that both could verify, Sorcar-Max was roughly
twice as fast (averaging 24 s per program for Sorcar-MAX vs. 51 s per program
for Houdini-ICE).

While Sorcar-Max still emerges better overall than Houdini-ICE, we are
not entirely sure why implementing Houdini as an external Horn-ICE learning
algorithm makes it perform much better than the internal implementation of
Houdini in Boogie (the internal Houdini algorithm within Boogie is embed-
ded deep and is very hard to configure or control). For the GPUVerify bench-
marks, the tool GPUVerify does invariant synthesis without assertions and then
inserts assertions to verify the program, and this could be one difference. We
leave answering this question for future work.

5 Conclusion

In this paper, we have developed a new class of learning algorithms for con-
junctions, named Sorcar, which are biased towards the simplest conjunctive
invariant that can prove the assertions correct. Sorcar is parameterized by
functions to identify relevant predicates and guarantees to learn an invariant in
a linear number of rounds (if one exists). We have shown that Sorcar proves
programs correct significantly faster than state-of-the-art Houdini-based tools.

There are several future directions to pursue. First, we believe that further
algorithms for learning conjunctions need to be explored. For instance, the Win-
now algorithm [30] learns from positive and negative samples in time O(r log n),
where r is the size of the final formula and n is the number of predicates. Finding
Horn-ICE learning algorithms that have such sublinear round guarantees can be
very interesting as r is often much smaller than n in verification examples. Sec-
ond, we would like to use the new Sorcar algorithms in specification mining
settings where smaller invariants are valuable as they are read by humans. Third,
there are several types of inference algorithms similar to Houdini (see [39]), and
it would be interesting to explore how well Sorcar performs in such settings.

Acknowledgements. We thank the reviewers for their many valuable suggestions
that helped improve this paper. This material is based upon work supported by the
National Science Foundation under Grant No. 1527395.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series, D: Information and Commu-
nication Security, vol. 40, pp. 1–25. IOS Press (2015)

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 343

2. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7), 68–76 (2011)

3. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Snowbird, Utah,
USA, 20–22 June 2001, pp. 203–213. ACM (2001)

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

6. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a
verifier for GPU kernels. In: Proceedings of the 27th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, 21–25 October 2012, pp.
113–132. ACM (2012)

7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18275-4_7

8. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2_20

9. Chong, N., Donaldson, A.F., Kelly, P.H.J., Ketema, J., Qadeer, S.: Barrier invari-
ants: a shared state abstraction for the analysis of data-dependent GPU kernels.
In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA 2013, part
of SPLASH 2013, Indianapolis, IN, USA, 26–31 October 2013, pp. 605–622. ACM
(2013)

10. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

11. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2

12. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_39

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, pp. 238–252. ACM (1977)

14. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via
abductive inference. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, 26–31 October 2013,
pp. 443–456. ACM (2013)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39

344 D. Neider et al.

15. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: Proceedings of the 22nd International Conference on on
Software Engineering, ICSE 2000, Limerick Ireland, 4–11 June 2000, pp. 449–458.
ACM (2000)

16. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learn-
ing for synthesizing invariants and contracts. PACMPL 2(OOPSLA), 131:1–131:25
(2018)

17. Fedyukovich, G., Kaufman, S.J., Bodík, R.: Sampling invariants from frequency
distributions. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, 2–6 October 2017, pp. 100–107. IEEE (2017)

18. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6_29

19. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quanti-
fied invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 813–829. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_57

20. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_5

21. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pp. 499–512 (2016)

22. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, Beijing, China, 11–16 June
2012, pp. 405–416. ACM (2012)

23. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, 7–13 June 2008, pp. 281–292. ACM
(2008)

24. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_48

25. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20–22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA,
pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972)

26. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

27. Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. CoRR
abs/1501.04725 (2015). http://arxiv.org/abs/1501.04725

28. Lal, A., Qadeer, S.: Powering the static driver verifier using corral. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, 16–22 November 2014, pp. 202–212.
ACM (2014)

29. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_32

https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-642-02658-4_48
http://arxiv.org/abs/1501.04725
https://doi.org/10.1007/978-3-642-31424-7_32

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 345

30. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. Mach. Learn. 2(4), 285–318 (1987)

31. Löding, C., Madhusudan, P., Peña, L.: Foundations for natural proofs and quanti-
fier instantiation. Proc. ACM Program. Lang. 2(POPL), 10 (2017)

32. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

33. Microsoft: Static driver verifier. https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/static-driver-verifier. Accessed 26 Apr 2019

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

35. Neider, D., Garg, P., Madhusudan, P., Saha, S., Park, D.: Invariant synthesis for
incomplete verification engines. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10805, pp. 232–250. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2_13

36. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software
property checking via static analysis and testing. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2_17

37. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation
in C using separation logic. In: Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2014, pp. 440–451.
ACM (2014)

38. Qiu, X., Garg, P., Ştefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2013, pp. 231–242.
ACM, New York (2013). https://doi.org/10.1145/2491956.2462169

39. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementa-
tion, Tucson, AZ, USA, 7–13 June 2008, pp. 159–169. ACM (2008)

40. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_6

41. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6_31

42. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 388–411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9_21

43. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_11

44. Solar-Lezama, A.: Program Synthesis by Sketching. Ph.D. thesis, University of
California at Berkeley (2008)

https://doi.org/10.1007/978-3-540-45069-6_1
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-89960-2_13
https://doi.org/10.1007/978-3-319-89960-2_13
https://doi.org/10.1007/978-3-642-00768-2_17
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1007/978-3-319-08867-9_6
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-31424-7_11

346 D. Neider et al.

45. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combi-
natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, 21–25 October 2006, pp. 404–415.
ACM (2006)

46. Thakur, A., Lal, A., Lim, J., Reps, T.: Posthat and all that: automating abstract
interpretation. Electron. Notes Theor. Comput. Sci. 311, 15–32 (2015)

47. Vizel, Y., Gurfinkel, A., Shoham, S., Malik, S.: IC3 - flipping the E in ICE. In:
Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 521–538.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_28

48. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, 18–22 June 2018, pp. 707–721.
ACM (2018)

https://doi.org/10.1007/978-3-319-52234-0_28

	Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants
	1 Introduction
	2 Background
	2.1 The Horn-ICE Learning Framework
	2.2 Houdini as a Horn-ICE Learning Algorithm

	3 The Sorcar Horn-ICE Learning Algorithm
	3.1 The Passive Sorcar Algorithm
	3.2 The Iterative Sorcar Algorithm
	3.3 Computing Relevant Predicates

	4 Experimental Evaluation
	5 Conclusion
	References

