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Abstract

In this paper, we present a novel learning framework for
inferring stateful preconditions (i.e., preconditions constrain-
ing not only primitive-type inputs but also non-primitive-
type object states) modulo a test generator, where the quality
of the preconditions is based on their safety and maximality
with respect to the test generator. We instantiate the learn-
ing framework with a specific learner and test generator to
realize a precondition synthesis tool for C#. We use an ex-
tensive evaluation to show that the tool is highly effective in
synthesizing preconditions for avoiding exceptions as well
as synthesizing conditions under which methods commute.

CCS Concepts • Theory of computation → Program

specifications; • Software and its engineering → Dy-
namic analysis; • Computing methodologies →Classifi-
cation and regression trees.

Keywords Specification Mining, Data-Driven Inference,
Synthesis
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1 Introduction

Reliable and robust software needs to function well even
when given illegal inputs. One common way to handle il-
legal inputs is to equip the software with a precondition:
any inputs violating the precondition are classified as ille-
gal inputs, and further executions on these inputs beyond
the precondition-checking point are prevented. To address
error-proneness and tediousness of manually deriving and
specifying preconditions, researchers have proposed vari-
ous existing automatic approaches of precondition inference
based on static analysis (e.g., [4, 7–9, 12, 23, 24, 26, 34, 36])
or dynamic analysis (e.g., [5, 6, 10, 11, 13, 15, 29, 33]).

Given that static analysis is conservative in nature and of-
ten results in many false positives, existing approaches based
on dynamic analysis have their advantages, being broadly
classified into two major categories: white-box ones [6, 10,
11, 13][29, VPregen] and black-box ones [15, 29, 33][29, PIE].
Both categories learn preconditions from runtime informa-
tion collected from software execution. For white-box ap-
proaches, runtime information typically includes program
states in between statements inside the software, whereas
for black-box approaches, runtime information typically in-
cludes inputs and outputs of the invoked methods defined
on the interface of a class.

However, existing approaches of precondition generation
based on dynamic analysis typically do not tackle two major
challenges. First, most of these approaches do not give any
guarantee on the quality of the synthesized preconditions.
If preconditions are learned passively using feature vectors
of states observed on some fixed set of test inputs, the learn-
ing is intrinsically incomplete and can lead to overfitting
the given test inputs, producing preconditions that are not
guaranteed to generalize to unseen test inputs. Certain re-
cent white-box approaches (e.g., [29, VPreGen]) can prove
that preconditions are safe with the help of a static verifier,
but the required verification is a hard problem to automate,
requiring synthesis of inductive loop invariants, etc. In this
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paper, we explore a different guarantee—to ensure that the
synthesized precondition is safe (and maximal) with respect
to a test generator, which is typically a lot more scalable than
a static verifier.

Second, the target preconditions are stateful by nature for
object-oriented programs: the target preconditions constrain
not only primitive-type inputs (such as integers and strings)
but also non-primitive-type inputs, such as the receiver-
object states and object states of a non-primitive-type ar-
gument for the method under consideration.

To address these two challenges, in this paper, we present
a novel active learning framework for testing-assisted in-
ference of stateful preconditions that are guaranteed to be
safe and maximal with respect to a given test generator.
Safety and maximality are both parameterized with respect
to a test generator. We want a precondition that is safe—
the test generator cannot find a precondition-allowing (i.e.,
precondition-satisfying) input whose execution leads to a
failure, and a precondition that is maximal—the test gener-
ator cannot find an input disallowed by the precondition
whose execution does not lead to any failure. We define this
requirement through a formal notion of ideal preconditions
with respect to a test generator.

To synthesize stateful preconditions, our framework in-
cludes an abstraction based on observer methods defined
for various classes, namely an observer abstraction. This
abstraction enables the learned precondition to express ab-
stract properties of non-primitive-type inputs while avoiding
revealing implementation details (e.g., primitive-type object
fields recursively reachable from an input object along with
the heap structure of an input object).

Our active learning framework combines a black-box learner
with a white-box teacher, with the latter realized using a test
generator, in order to learn ideal preconditions. Working by
actively querying a test generator to produce an ideal pre-
condition alleviates the problem of learning a precondition
that overfits a particular set of inputs. Learning ideal pre-
conditions in a logic L with the aid of a test generator can
then be posed as actively learning formulas using positive
and negative feature vectors that the test generator produces
in rounds of interaction between the test generator and the
learner.
However, there are two main issues that need to be ad-

dressed when realizing this active learning, mostly due to
the fact that inherently the test generator cannot guaran-
tee feature vectors to be positive (but can certify negative
feature vectors). First, the test generator can label certain
vectors as positive, and later change its mind and label these
vectors negative. Second, the limited expressiveness of the
logic to state preconditions can also force the exclusion of
certain positive inputs from the learned precondition.

To address these issues, our framework includes a compo-
nent named a conflict resolver that effectively relabels posi-
tive feature vectors to negative vectors when necessary. The

resulting learning framework with the conflict resolver can
be instantiated for any logic for expressing preconditions
using any learner and any test generator in order to learn
ideal preconditions.
We also prove a convergence result—assuming that the

logic expresses finitely many formulas closed under Boolean
operations, an ideal precondition expressible in the logic
exists, and the learner is able to always produce formulas
consistent with samples when they exist, we are guaranteed
to converge to an ideal precondition.

We instantiate the learning framework with a learner that
uses an algorithm for decision-tree learning to synthesize
formulas in a particular logic that involves Boolean combi-
nations of predicates and inequalities involving numerical
predicates, where the predicates describe both properties of
primitive-type inputs and non-primitive-type inputs (such
as the receiver objects and non-primitive-type input param-
eters). This algorithm is a standard machine-learning algo-
rithm for decision-tree learning that uses statistical measures
to build trees of small size; these trees correspond to precondi-
tions consistent with the (conflict resolved) counterexamples
returned by the test generator in each round, and learning
continues till the learner finds an ideal precondition.

We also instantiate the framework for two important tasks
in specification inference: runtime-failure prevention and
conditional-commutativity inference [37]. The former prob-
lem asks to synthesize preconditions that avoid runtime ex-
ceptions of a single method. The latter problem asks, given
two methods, a precondition that ensures that the two meth-
ods commute, when called in succession. Inferring precon-
ditions for commutativity is important for programmers to
understand when they can reorder calls to methods while
preserving behavior equivalence, and also has applications
to downstream tools such as program analysis and tools for
instrumenting concurrency control [20–22, 41].
We implement a prototype of our framework in a tool

called Proviso using a learner based on the ID3 classification
algorithm [31], a powerful classification algorithm in the
machine learning community, and Pex [39], an industrial
test generator based on dynamic symbolic execution [19,
35], shipped as IntelliTest in the Microsoft Visual Studio
Enterprise Edition since Visual Studio 2015/2017/2019.

This paper makes the following main contributions:
• A novel formalization for the inference problem of
stateful precondition modulo a test generator, called
ideal preconditions, that guarantees that it is safe and
maximal with respect to the test generator.

• A novel active learning framework for inferring ideal
stateful preconditions, using a conflict resolver com-
ponent to adaptively mark positive inputs as negative,
when necessary, in order to deal with the incomplete-
ness of the test generator and the inexpressiveness of
the logic for expressing preconditions.
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[PexMethod]

public void PUT-CommutativityAddContains(

[PexAssumeUnderTest] ArrayList s1, int x, int y){

DataStructures.ArrayList s2 = new

DataStructures.ArrayList(s1); //clone s1

int a1, a2; bool ad1, ad2;

//First Interleaving

a1 = s1.Add(x);

ad1 = s1.Contains(y);

//Second Interleaving

ad2 = s2.Contains(y);

a2 = s2.Add(x);

PexAssert.IsTrue(a1 == a2 && ad1 == ad2 &&

Equals(s1, s2));}

Figure 1. Encoding conditional property: Commutativity
conditions for methods Contains and Add from the ArrayList
class in the .NET Library.

• Convergence arguments that the learning framework
will eventually synthesize a safe and maximal precon-
dition modulo the test generation, if there is one, when
the hypothesis space is finite.

• Instantiations of the framework in a tool Proviso for
two important tasks in specification inference (precon-
ditions for preventing runtime failures and conditions
for commutativity of methods) and using a machine-
learning algorithm for decision trees and an industrial
test generator (Pex).

• An extensive evaluation on various C# classes from
well-known benchmarks and open source projects that
demonstrates the effectiveness of the proposed frame-
work.

2 An Illustrative Example

We next show how our framework is instantiated for the task
of conditional-property inference and then illustrate through
an example how our approach addresses the precondition
synthesis problem.

Let us firstmodel the problem of conditional-commutativity
inference (finding conditions under which two methods
commute) as a problem of precondition synthesis. Consider
the parameterized unit test [40] in Figure 1. The method
PUT_CommutativityAddContains checks whether the methods
of an arraylist, Add and Contains, commute when called with
an arraylist s1, and for particular parameter inputs. The
method Add(x) returns the index at which x has been added,
and Contains(y) returns true if y is in s1 and false otherwise.
To check for commutativity, the test method first clones the
input arraylist s1 into s2. It then calls the method sequence
Add(x) and Contains(y) on s1, and Contains(y) and Add(x)

on s2. Finally, it checks whether the return values of the
methods and resulting objects s1, s2 are equal. If they are

not, the methods do not commute and hence it raises an
exception; it follows that the precondition for the method
PUT_CommutativityAddContains to prevent exceptions (e.g.,
assertion failure) is precisely the condition under which the
two methods Add(x) and Contains(y) commute.
To synthesize stateful preconditions, we instantiate our

framework by fixing a logic L of octagonal constraints, by
fixing a conflict resolver, a component that effectively rela-
bels positive feature vectors to negative ones when necessary
(see Section 4.1 for details), by fixing an exact learning engine,
decision-tree learning, and by fixing a test generator, Pex. As
inputs, our approach takes a methodm (e.g., Figure 1) for pre-
condition synthesis and a set of Boolean and integer observer
methods in the ArrayList class, ObsB = {Contains(int)}
and ObsZ = {Count, IndexOf(int), LastIndexOf(int)}, re-
spectively. Our approach uses these observer methods and
primitive parameters of m to generate a feature vector ®f
by applying those methods using various combinations of
parameters ofm:
[s1.Count(), x, y, s1.IndexOf(x), s1.IndexOf(y),
s1.LastIndexOf(x), s1.LastIndexOf(y), s1.Contains(x),
s1.Contains(y)].

Next we demonstrate how our algorithm proceeds. A setX
(initially empty) of cumulative positive and negative feature
vectors is maintained. Our algorithm proceeds in rounds: the
learner begins by proposing a conjectured precondition, the
testing-based teacher generates counterexamples. To gener-
ate negative counterexamples, the teacher generates inputs
that are allowed by the conjectured precondition but cause
the method to fail. To generate positive counterexamples, the
teacher generates inputs that are disallowed by the conjec-
tured precondition and do not cause the method to fail. These
counterexamples are given to a conflict resolver, which then
relabels a positive counterexample c to negative if in X there
is a negative counterexample c ′ that is L-indistinguishable
from c . The algorithm then checks whether the current con-
jectured precondition is consistent with the updated set X
(i.e., the conjectured precondition allows the positive feature
vectors in X and disallow the negative feature vectors in X ):
if yes, we stop and output the precondition; otherwise, we
proceed to the next round. We elaborate the role of the con-
flict resolver and the soundness of the preceding technique
in the rest of the paper.
To illustrate the conflict resolver on this example, we as-

sume that no observer methods are given, and the feature
vector is ®f ′ = [x, y]. The learner begins by proposing true,
and the testing-based teacher produces negative counterex-
amples ([0, 0],−), ([10, 10],−), being added toX (which is ini-
tially empty). The precondition true is not consistent with X
and so we proceed with the next round. The learner next pro-
poses false (as it is consistent with X ). The teacher then gen-
erates two positive feature vectors ([0, 0],+) and ([8, 9],+).
At this point, we have encountered conflict.X has a negative
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feature vector ([0, 0],−) and an L-indistinguishable positive
vector ([0, 0],+). The conflict resolver relabels ([0, 0],+) to
([0, 0],−). Again, the current conjecture false is not consis-
tent with the updated X and so we proceed. This process (in
our tool) continues for 4 rounds when the learner ultimately
proposes (x , y), which is consistent with all vectors that
the test generator returns, and we stop and return (x , y) as
the precondition. When the feature vector ( ®f ) mentioned ear-
lier includes all the observer methods, the preceding conflict
does not occur, and the learner synthesizes the precondition
(x = y ∧ s1.Contains (x)) ∨ (x , y).

A crucial aspect here is that the testing-based teacher helps
the learner by generating counterexamples that show the
conjectured precondition to be unsafe or non-maximal. We
terminate only when the learner is able to convince the test
generator that the precondition is safe and maximal (modulo
the power of the test generator).

3 Problem Formalization of Precondition

Synthesis Modulo a Test Generator

In this section, we formalize the problem of synthesizing
preconditions with the aid of a test generator.
We assume that we have a methodm(®p) with formal pa-

rameters ®p and assertions in it for which we want to synthe-
size a precondition. Intuitively, we want the precondition to
satisfy two requirements: (a) be safe, in the sense that the
method when called with any state allowed by the precondi-
tion does not throw an exception (either a runtime exception
such as division by zero or an assertion-violating exception),
and (b) be maximal, in the sense that it allows as many in-
puts as possible on which the method does not throw an
exception. Since we do not know a priori the precise set of
inputs on which the method throws an exception and does
not throw exceptions, respectively, we resort to obtaining
this information from a test generator.

Challenges in defining the problemand framework. Defin-
ing the precondition synthesis formally modulo a test gener-
ator is complicated by three main aspects of the problem:
− Incomplete information of object state: Preconditions can
depend on the receiver object state of the methodm() for
which we are synthesizing the precondition for, and the state
of objects that are passed as parameters tom(). We propose
a set of observer methods that give properties of these ob-
jects, and allow the precondition to state restrictions using
these properties. We hence work with feature vectors, which
capture the return values of observer methods on objects.
However, using observer methods intrinsically introduces in-
complete information about the object state: several different
input states can have the same feature vector.
− Incomplete test generator: Given a method and a precondi-
tion for it, the test generator can find input states that the
precondition should disallow as the method can throw an
exception on these input states and find input states that

the precondition should allow as the method does not throw
any exception on these input states. A feature vector is valid
(or invalid) if the method can throw an exception on none
(or one) of all input states conforming to the feature vector.
However, since we work with an abstraction of input states
using feature vectors, we need a test generator to find valid
feature vectors and invalid ones. It turns out that given a
precondition, a test generator can readily be adapted to find
invalid feature vectors, but not valid ones. Consequently, we
need to work with a test generator that may mark a feature
vector tentatively valid, and then later change its mind and
find it invalid. Learning of preconditions hence needs to
accommodate such fluctuations.
− Expressiveness of the logic: The logic used for expressing the
precondition may not be expressive enough to distinguish
two feature vectors, one being valid and the other being
invalid. In other words, there is another level of abstraction
caused by the logic, in addition to the abstraction induced
by the use of observer methods, and the precondition must
be permitted to disallow certain positive feature vectors.

Our solution to the preceding challenges involves (1) defin-
ing the precondition synthesis problem as synthesizing an
ideal precondition (Definition 3.2), where the notion of an
ideal precondition accommodates the fluctuations of a test
generator, and (2) a framework that synthesizes ideal precon-
ditions using a conflict resolver (Section 4 and Figure 2) that
manipulates counterexamples returned by the test generator
in each round. We emphasize that the component for synthe-
sizing formulas from the (conflict-resolved) counterexamples
is standard, and we can use a variety of learning algorithms
from the literature. However, arguing convergence of such
learning algorithms in learning ideal preconditions in the
presence of the conflict resolver has to be argued anew (Sec-
tion 4.3).
We next formalize the notions of programs, valid and

invalid input states, and testing-based teachers (Section 3.1),
and then formalize the problem of precondition synthesis
modulo a testing-based teacher using the notion of an ideal
precondition (Section 3.2).

3.1 Observer Methods, Logic for Preconditions, and

Testing-Based Teachers

Methods. Let us fix a set of types T, including primitive
types and classes. Each type t ∈ T is associated with a data
domain D(t) that denotes the set of values that variables
of type t range over. In the following, we assume that each
variablev has an implicit type t associatedwith it. In addition,
we denote D(t) by simply using D(v).

We assume that we have a target methodm(®p)with formal
parameters ®p that we want to synthesize a precondition for.
Let us also fix a set of pure (i.e., side-effect free) observer

methods F = { f1( ®p1), . . . , fn( ®pn)} that return a primitive
type. These methods help query properties of the state of the
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objects whose class defines these methods. For a methodm
with input parameters ®p that we aim to find a precondition
for, we allow the precondition to express properties of ®p using
constraints on variables of primitive types in ®p as well as
the return values of observer methods that return a value of
primitive type when called with tuples of parameters drawn
from ®p.

We have, apart from the above, other methods for classes
(including constructors andmutatingmethods, i.e., those that
mutate the object). The test generator can use these methods
to create valid object states, by using method sequences
composed of constructors and mutating methods.

Let us now define the semantics of the methods abstractly.
For any class c , letSc denote the set of valid states of the object
of the class c (Sc can be infinite, of course, and denotes the
set of valuations and heaps maintained by the public/private
fields in the class). Note that we assume that the set Sc
contains valid object states, i.e., reachable states from initial
object construction. For each parameter p of type class c , let
us denote by D(p) the valid states Sc .
The semantics of the observer method fi ( ®pi ) is given by

a (complete) function JfiK : D( ®pi ) −→ Di , where Di is the
data domain for the return primitive type of method fi . Note
that the observer methods return properties of the state of
the object but do not change the state. Note also that we
require these observer methods not to throw exceptions, and
hence model their semantics using complete functions.
The semantics of the methodm(®p) is given by a partial

function JmK : Sc ×D(®p)⇀ Sc ×D, where c is the class that
m belongs to and D is the data domain for the return type of
m (whether it be of primitive type or a class).

Valid and invalid input states. An input state for m(®p)
is pair (s,v) ∈ Sc × D(®p) where c is the class that method
m belongs to and v is a valuation of the parameters in ®p of
methodm. Note that the input state contains the receiver
object state namely s ofm, and the values of the parameters
in ®p (some of which can be object states as well of their
respective classes).
We say that an input state (s,v) is an invalid input state

form ifm throws an exception1 on that input state i.e., JmK
is undefined on (s,v). We say that an input state (s,v) is a
valid input state form if (s,v) is not an invalid input state.

Feature vectors. One fundamental aspect of our problem is
that the client does not know precisely the internal states of
objects (the receiver object state and state of other objects
given as parameters), but has incomplete information about
them gleaned from the return values of observer methods.
We define a feature vector ®f as a vector of values of the

primitive parameters in ®p and the values of observer methods

1Note that in this paper, when we say an exception, we refer to an uncaught
exception as unexpected program behaviors such as DivideByZeroExcep-
tion. Assertion violation can also cause an uncaught exception to be thrown.

on the object states (called with various combinations of
parameters from ®p). Typically, the features are of primitive
types (integer and Boolean in our tool).

Logic for expressing preconditions. The logic L, for ex-
pressing preconditions for a method m(®p) in this paper is
quantifier-free first-order logic formulas. Recall that classical
first-order logic is defined by a class of functions, relations,
and constants. We choose this vocabulary to include the
following: (a) the usual vocabulary over the various primi-
tive data domains that the program operates on (Booleans,
integers, strings, arrays of integers, etc.), and (b) observer
methods as functions. The logic then allows quantifier-free
formulas with free variables ®p. Note that such a formula φ,
when interpreted at a particular program state (which gives
meaning to various objects and hence to corresponding ob-
server methods), defines a set of input states—the input states
(s,v) such that when observer methods are interpreted us-
ing the state s , and input parameters ®p are interpreted using
v , the formula holds. Hence, a logical formula represents a
precondition—the set of states that satisfy the formula being
interpreted as the precondition.

Note that the logic cannot distinguish between two input
states that have the same feature vector. We can in fact view
logical formulas as defining sets of feature vectors. The logic
hence introduces a coarser abstraction of feature vectors
(which themselves are abstractions of input states).

For the tool and evaluation in this paper, the logic L is
a combination of Boolean logic and octagonal constraints
on integers; the observer methods work on more complex
datatypes/heaps (e.g., stacks, sets), returning Booleans or
integers as output (e.g., whether a stack is empty, the size of
a set container).

Testing-based teachers and counterexamples. The gen-
eral problem of precondition synthesis is to find a precon-
dition expression φ (in logic L) that captures a maximal set
of valid feature vectors (where a valid feature vector is one
whose conforming input states are all valid) for the method
m. This synthesis problem is clearly undecidable. In fact,
checking whetherm throws an exception on even a single
input state is undecidable. Proving a precondition to be safe
requires verification, a hard problem in practice, and current
automatic verification techniques do not scale to large code
bases.
We hence shape the definition of our problem with re-

spect to a test generator, which we call a testing-based teacher
(TBT ). (We call it a teacher as it teaches a learner the precon-
dition.)
A TBT is just a test generator that generates test input

states form. Ideally, we would like the TBT to be guided to
find test input states for showing that a given precondition
φ is not safe or maximal, i.e., input states allowed by φ on
whichm throws exceptions and input states disallowed by φ
wherem does not throw an exception (hence property-driven
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testing tools such as Pex are effective, but not testing tools
such as Randoop that generate random inputs). Formally,

Definition 3.1 (Testing-based teacher). A testing-based teacher
(TBT ) is a function that takes a methodm, a precondition φ
form, and generates a finite set of input states form (that
may or may not be allowed by φ) and whether they are valid
or not. □

Note that in our formulation, theTBT is a function; hence,
for any method and precondition, we expect the TBT to be
deterministic, i.e., it produces the same set of test inputs
across rounds for a given precondition. This assumption is
not a limitation of our framework, but a way to formalize a
TBT . Any testing-based tool can be made deterministic by
fixing its random seeds, and by fixing configurable bounds
such as the number of branches explored, etc. We do not
require a TBT to report all or any input states. The TBT is
incomplete and may not be able to find a counterexample
(for safety or maximality), even if one exists.

Given a methodm and a precondition φ for it, we can ex-
amine the test inputs generated by theTBT to check whether
they contain counterexamples. An input state that is allowed
by φ but leadsm to throw an exception shows that φ is not
safe, and is a negative counterexample. An input state that is
disallowed by φ and on whichm executes without throwing
any exception indicates potentially that φ may not be maxi-
mal, and we call this input state a positive counterexample.
(As we shall see, such counterexample does not necessarily
indicate that φ is not maximal.)

We are now ready to define the goal of precondition gen-
eration parameterized over such a TBT . Roughly speaking,
we want to find maximal and safe preconditions expressible
in our logic; however, the precise definition is more subtle
as we describe next.

3.2 Precondition Synthesis Modulo a Testing-Based

Teacher

Incomplete information. Since the learner learns onlywith
respect to an observer abstraction in terms of feature vectors,
we assume that input states returned by the testing-based
teacher are immediately converted to feature vectors, where
the feature values are obtained by calling the respective ob-
server methods. We also refer to feature vectors as positive
or negative counterexamples, if the conforming input states
are positive or negative, respectively.

For any feature vector ®f , there are, in general, several input
states that are conforming to ®f (i.e., those input states whose
features are precisely ®f ). Recall that a feature vector ®f is
valid if all input states conforming to it are valid input states;
a feature vector ®f is invalid if it is not valid—i.e., there is
some invalid input state whose feature vector is ®f .

It turns out that incomplete information the client has
about the object state creates many complications. In partic-
ular, a testing tool can find invalid feature vectors but cannot
find valid feature vectors using test generation.
Consider a method m and a precondition φ for it. The

precondition defines a set of feature vectors, which in turn
define a set of input states. Notice that if we can find an input
state that conforms to φ on which the program throws an
exception, we can deem the precondition to be unsafe, and
declare the feature vector corresponding to that input state
as invalid. We name such feature vectors negative counterex-
amples, and a testing tool can find these invalid vectors.
However, notice that an execution of the method on a

single input state cannot show φ to be non-maximal. If the
testing tool finds a valid input state (s,v) disallowed by φ, we
still cannot say that the feature vector corresponding to the
input state is valid. The reason is that there may be another
invalid input state (s ′,v ′) that conforms to the same feature
vector. Intuitively, witnessing non-maximality boils down to
finding a valid feature vector. This situation is the same as
asking whether there exists a feature vector disallowed by φ
such that all input states conforming to the feature vector are
valid. The ∃∀ nature of the question is what makes finding
counterexamples for maximality hard using test generation.
(Even logic-based tools, such as Pex, that use SMT solvers
are typically effective/decidable for only ∃∗ properties, i.e.,
quantifier-free formulas.) On the other hand, finding an in-
valid feature vector (included by by φ) asks whether there
exists a feature vector allowed by φ such that there does exist
an invalid input state conforming to the feature vector; this
question is an ∃∃ question that can be found using tools
such as Pex.

Formalizing precondition generation modulo a testing-
based teacher. As explained earlier, for a precondition φ, an
invalid input state (allowed by φ) found by a testing-based
teacher (TBT) is a witness to the fact that φ is unsafe, i.e., no
safe precondition should allow this input state.
Valid input states ((s,v),+) found by the TBT but disal-

lowed by the current precondition indicate that the precon-
dition may potentially not be maximal, as it disallows an
input state wherem does not throw an exception. However,
we do not want to demand that we find a precondition that
definitely allows (s,v). The reason is that such a requirement
is too strong as there may be another input state of the form
((s ′,v ′),−) that conforms to the same feature vector as (s,v).
Another reason is that even if the feature vectors are not
the same, the logic may be unable to distinguish between
the two vectors. In other words, it may be the case that no
precondition expressible in our logic is both safe and allows
this positive example (s,v).
We next define the notion of an ideal precondition that

captures both safety and maximality modulo the incomplete
information that the client has of the object state and modulo

780



Learning Stateful Preconditions Modulo a Test Generator PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

the expressiveness of the logic, with respect to theTBT . First,
let us define some terminology: for any two input states (s,v)
and (s ′,v ′), we say (s,v) is L-indistinguishable from (s ′,v ′)
if there is no formula (in the logic L) that evaluates to true
on one of them and false on the other (note that if the two
input states conform to the same feature vector, then they
are indistinguishable no matter the logic). In a similar way,
we define L-indinguishability for feature vectors.

Definition 3.2. An ideal precondition form(®p) with respect
to a TBT is a precondition φ in the logic L such that φ
satisfies the following two conditions:

• Safety wrt TBT: the TBT returns a set that has no
invalid input state allowed by φ.

• Maximality wrt TBT: for every valid input state
((s,v),+) returned by the TBT but disallowed by φ,
there is some invalid input state ((s ′,v ′),−) (returned
by the TBT allowed by some precondition) that is L-
indistinguishable from (s,v). □

Intuitively, the first condition of safety demands that the
TBT is not able to find any invalid input state allowed by
the precondition (i.e., one on whichm throws an exception).
The second condition states that for any valid input state
(s,v) found by the TBT but disallowed by the precondition,
there must be some invalid input state (returned by the TBT
allowed by some precondition, not necessarily φ) that is L-
indistinguishable from (s,v).

A precondition on which theTBT returns the empty set is
hence also an ideal precondition. Note that in general, there
may be no unique safe and maximal precondition.
We can now state the precise problem of precondition

generation modulo a TBT :
Problem Statement: Given a program with the method
m(®p) and observer methods and a logic L for expressing
preconditions form, and given a testing-based teacherTBT ,
find an ideal precondition form(®p)with respect to theTBT .

4 The Learning Framework for

Synthesizing Preconditions Modulo a

Test Generator

In this section, we describe our general learning framework
for synthesizing ideal preconditions with respect to a testing-
based teacher (TBT). We first describe this framework (Sec-
tion 4.1) and then discuss multiple ways to instantiate the
framework (Section 4.2). Adapting a TBT to realize this frame-
work is discussed in Section 5. Finally, in Section 4.3, we
discuss general conditions under which we can show that
our learners and learning framework converge to an ideal
precondition with respect to any TBT.

4.1 Framework Overview

Our learning framework, depicted in Figure 2, consists of
five distinct components: (1) a passive learner (precondition

Figure 2. The learning framework for synthesizing ideal
preconditions with respect to a TBT.
synthesizer) that synthesizes preconditions from positive
and negative feature vectors, (2) a TBT, interacting in rounds
of communication with the learner, that returns valid/invalid
input states, (3) a featurizer that converts valid/invalid input
states to positive/negative feature vectors, and (4) a conflict
resolver (CRL), which is the main novel component, that
resolves conflicts (created by incomplete information) by
changing positive feature vectors to negative ones when
necessary. We emphasize that one can use any standard
passive learner in this framework as long as it finds formulas
that are consistent with the set X of labeled feature vectors.

The framework maintains a set X , which contains the ac-
cumulated set of (conflict-resolved) positive/negative labeled
feature vectors that the TBT has returned. In each round i ,
the learner proposes a precondition φi that is consistent with
the set, and the TBT returns a set of valid and invalid input
states. The featurizer, with the help of observer-method calls,
converts the input states to positive/negative labeled feature
vectorsCi . We add the counterexample input states to X and
call the conflict resolver for the logic L, and update X . We
then check whether the current conjecture φi is consistent
with the updatedX—namely whether φ is true on every posi-
tive feature vector and false on every negative feature vector.
If it is, then we exit having found an ideal precondition, and
if not, we iterate with the precondition synthesizer for the
new set X .

Conflict resolver. Formally, the conflict resolver, given a
set X of positive and negative feature vectors, returns the
set of positive and negative feature vectors such that

• the returned set contains every feature vector (in X )
that is negative;

• for any positive feature vector ( ®f ,+) in X , if there is a
negative feature vector ( ®f ′,−) in X such that ®f and ®f ′
areL-indistinguishable, then the returned set contains
the negative feature vector ( ®f ,−); otherwise, the set
contains the positive feature vector ( ®f ,+).

To understand why the conflict resolver working as above
is a sound way to obtain ideal preconditions, recall the two
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Figure 3. An example of conflict resolution where positive
vectors are made negative. Partitions denote equivalence
classes of indistinguishable vectors; points denote positive
and negative feature vectors. The shaded region denotes a
consistent precondition.
properties of ideal preconditions in Definition 3.2: safety wrt
TBT and maximality wrt TBT. The conflict resolver keeps
negative feature vectors as they are (since safety wrt TBT re-
quires that the precondition exclude them). However, when a
positive feature vector has a corresponding indistinguishable
negative feature vector (returned by the TBT in this round or
a previous round), it is clear that no precondition expressible
in the logic can include the positive feature vector. Hence the
conflict resolver turns it negative, which is allowed by the
definition of maximality wrt TBT in the definition of ideal
preconditions.
Figure 3 shows an example of the effect of a conflict

resolver— it converts two positive feature vectors to negative
ones since they have corresponding negative feature vectors
(in X ) that are not distinguishable from them. A consistent
precondition (shown as the shaded region) consists of some
equivalence classes of indistinguishable feature vectors that
include the positive vectors and exclude the negative ones,
after conflict resolution.

Notice that in any set X of counterexamples accumulated
during the rounds,X is a subset of the set of all counterexam-
ples that TBT returns on all possible preconditions. Hence it
is easy to see that ifφi is consistent with the conflict-resolved
set obtained from X ∪Ci , then it is in fact ideal (for every
positive counterexample disallowed by φi , in X there is a
negative counterexample (returned by the TBT) being indis-
tinguishable). Consequently, φ is ideal when the learning
framework terminates.

4.2 Instantiations of the Framework

Our framework can be instantiated by choosing a logic L,
choosing any synthesis/learning engine for exactly learning
logical expressions in L, and building conflict resolvers for
L. We next list multiple such possibilities.

Logic for preconditions. We can instantiate our framework
to the logic LB,Z described below for expressing precondi-
tions. Let us assume that feature vectors consist of a set of
Boolean features P = {α1(®p), . . . ,αn(®p)} and a set of integer
features N = {r1(®p), . . . , rt (®p)}. Note that these features all
depend on the parameters ®p, and can be either Boolean or

integer parameters in ®p or calls to observer methods (using
parameters in ®p) that return Booleans or integers. The gram-
mar for the logic LB,Z of preconditions that we consider is

φ ::− α(®p) | r (®p) ≤ c | φ ∨ φ | φ ∧ φ | ¬φ
where α ∈ P , r ∈ N , and c ∈ Z.

We also consider certain sublogics of the preceding logic;
one being of particular interest is discussed in Section 4.3 on
convergence, where we require the threshold constants c to
be from a finite set of integers B.

Learners. By treating the Boolean and integer features as
Boolean and integer variables, we can use exact learning
variants of the ID3 algorithm for learning decision trees [25,
31] in order to synthesize preconditions for the logic LB,Z.
It is easy to adapt Quinlan’s decision tree learning algorithm
(which synthesizes small trees using a greedy algorithm
guided by statistical measures based on entropy) to an exact
learning algorithm [17]. In our evaluation (Section 6), we
mainly use such a learner.
A second and more expressive choice is to use passive

learners expressed in the syntax-guided synthesis frame-
work (Sygus [2]). This framework allows specifying a logic
syntactically (using standard logic theories) and allows a
specification expressing properties of the formula to be syn-
thesized. By making this specification express that the for-
mula is consistent with the set of samples, we can obtain
a passive learner that synthesizes expressions. The salient
feature here is that instead of having a fixed set of predicates
(like in the preceding decision-tree algorithm), predicates
are dynamically synthesized based on the samples. There
are multiple solvers available for the Sygus format, as it also
is part of a synthesis competition, and learners based on
stochastic search, constraint solving, and combinations with
machine learning are known [3, 27, 32]. In fact, one recent
tool named PIE [29] is similar to a Sygus solver and can be
used as a passive learner too. We have, in our evaluation,
tried multiple Sygus solvers and also the PIE passive learner.

Conflict resolvers. Conflict resolver algorithms crucially
depend on the logic. For the preceding logicLB,Zwith Boolean
and integer features, it is easy to see that any two feature
vectors that are different are in fact separable using the logic,
as each vector can be isolated from the rest. Consequently,
the conflict resolver simply changes a positive feature vector
to negative iff the same feature vector also occurs negatively
in the set X .

Consider now the same preceding logicLB,Z but wherewe
require the threshold constants c to be bounded—i.e., |c | < b,
where b is a fixed natural number. It is easy to see that a
conflict resolver for this logic needs to turn a positive feature
vector ®f to negative iff there is a negative feature vector
®д that agrees with ®f on all Boolean features and, for each
integer feature, either ®f and ®д both have the same feature
value or the feature values in ®f and ®д are both larger thanb or
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both smaller than −b. The implementation of this algorithm
is straightforward.

4.3 Convergence of Learning

We argue earlier that if the learning framework, instantiated
with any learner, terminates, then it has computed an ideal
precondition. In this section, we consider settings where the
learning framework is also convergent (i.e., is guaranteed to
terminate).
Let us fix a testing-based teacher TBT and let us assume

that there is (at least) one target concept φ∗ in L such that if
C is the set of all counterexamples returned by the TBT (in
response to any possible precondition), then φ∗ is consistent
with C .

We consider the case when the hypothesis space H of
preconditions is finite, i.e., when the number of possible
preconditions is finite, and when the logic is closed under
Boolean operations. For the logic LB,Z, this finite space natu-
rally occurs when the features are all Boolean or when we fix
a certain finite set of constants for thresholds for numerical
inequalities, e.g., [−b,+b] for some b ∈ N. We can now show
that our learning framework where the learner is any learner
that learns consistent formulas is guaranteed to find an ideal
precondition with respect to the TBT.

Theorem 4.1. Let the logic for preconditions be any finite
hypothesis space of formulasH that is closed under conjunc-
tions, disjunctions, and negation. Consider any instantiation
of the learning framework with any conflict resolver and any
learner that always returns a concept consistent with all the
given labeled feature vectors, if one exists. Then for any method
m(p), the learning framework is guaranteed to terminate and
return an ideal precondition for m, provided that m has an
ideal precondition expressible in the logic.

Proof gist: We argue that the learner can always return a hy-
pothesis consistent with the samples in each round, and that
when it first repeats the conjecture of a hypothesis H , the hy-
pothesis H must be an ideal precondition. The reason for the
latter is that whenH was first proposed, the teacher returned
a set of counterexamples. Later, if the learner proposed H ,
it must be that H is consistent with those counterexamples;
this situation would happen since in the interim when H
was proposed, the teacher would have returned at least one
indistinguishable negative counterexample for each positive
counterexample disallowed by H . Hence H would be ideal.
Given that the hypothesis space is finite, the learner must
eventually repeat a hypothesis, and hence always converges.

The reason why any consistent learner always finds some
logical formula that satisfies the set of (conflict-resolved)
samples is as follows. First, let Ĥ denote the tightest precon-
ditions, and hence any hypothesis in H is a disjunction of
preconditions in Ĥ. The preceding is true since the logic is
closed under Boolean operations. Let ≡ be an equivalence
relation on the set of input states that relate any two input

states not distinguishable by the formulas inH (equivalently
by Ĥ). Then we know that the conflict resolver would ensure
that feature vectors in each equivalence class are pure—that
there are no positive and negative vectors in the same class.
Consequently, the disjunction of the formulas corresponding
to the equivalence classes containing the positive samples is
consistent with the samples, and is inH. This concludes the
proof. □

5 Construction of a Testing-Based Teacher

In this section, we describe our techniques for adapting a
test generator to a testing-based teacher (TBT) that actively
tries to find counterexamples to safety and maximality of
given preconditions. We also describe how the featurizer can
be implemented.

5.1 Extracting Counterexamples

The first issue is to adapt the test generator to return negative
counterexample inputs for showing that a precondition is
not safe and positive counterexample inputs for showing that
a precondition is potentially not maximal. A test generator’s
goal is slightly different than a TBT’s (see Definition 3.1).
Given a method,m(®p), and a precondition, φ, the goal of a
test generator is to find samples of the form (s,v) allowed
by φ, and to generate valid and invalid input states, typically
trying to find invalid ones.

Extracting negative counterexamples is easy—we keep the
same precondition (the precondition needs to be evaluated
by calling the various observer methods) and we ask the
test generator to find inputs that cause exceptions. Valid and
invalid inputs found by the test generator can be returned.
To extract positive counterexamples, we instrument the

method as follows:
• replace the precondition φ with its negation ¬φ,
• for every assert statement, we insert an assume state-
ment for the same condition right before the assert

statement,
• add an assert(false) statement at the end of themethod,
and before every return statement (if any).

The valid/invalid inputs found by the test generator for the
instrumented method are returned (as valid/invalid inputs
to the original method).

5.2 Implementing the Featurizer

To form feature vectors from inputs generated by the test
generator, we insert additional statements at the beginning
of the method for computing the features. The features are
computed by calling the various observer methods and stor-
ing their return values in variables of appropriate type.

Although in theory we assume that observer methods are
pure, this assumption may not always be true in practice. In
our evaluation, we manually ensure that the chosen observer
methods are pure.
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Table 1. Statistics of evaluation subjects
Project / Classes #Classes #LOC

.NET Data structures:
46 14886Stack, Queue, Set, Map, ArrayList

QuickGraph:
319 34196Undirected Graph, Binary Heap

Lidregen Network:
59 14042NetOutGoingMessage, BigInteger

DSA: Numbers 60 5155
Hola Benchmarks 1 933
Code Contract Benchmarks 1 269

6 Evaluation

We prototype an implementation of our framework, called
the Proviso tool, for synthesizing preconditions for C# pro-
grams. We adapt an industrial test generator, Pex [39], to a
testing-based teacher, choose the logic LB,Z, over Booleans
and integers (introduced in Section 4.2), and a variant of
Quinlan’s C 5.0 decision tree algorithm [25, 31] to an ex-
act learner [17]. The conflict resolver is the one for LB,Z
described in Section 4.2. We instantiate the framework for
two tasks of specification inference: learning preconditions
for preventing runtime failures and learning conditions for
method commutativity in data structures. The Proviso tool
terminates only when it finds an ideal precondition modulo
the test generator.

In our evaluation, we intend to address the following main
research question:

RQ:Howeffectively can theProviso tool learn truly
ideal preconditions?

The purpose of this research question is to investigate how
effective our framework is in learning preconditions that
are truly ideal—truly safe and truly maximal. In Section 4,
we show that our learning algorithm when it terminates
will converge on a safe and maximal precondition, with
respect to the test generator. However, it may be the case
that the learned precondition is neither safe nor maximal
when compared to the ground truth (as determined by a
programmer examining the code). This situation can happen
for multiple reasons: ineffectiveness of the test generator
to generate counterexamples, lack of observer methods to
capture sufficient detail of objects, and inexpressiveness of
the logic to express the right preconditions. To answer this
research question, we manually inspect all of the cases and
derive ground truths to the best of our abilities and compare
them with the preconditions synthesized by Proviso.
Evaluation setup. We evaluate our framework on a combi-
nation of small and large projects studied in previous work
related to precondition inference [6, 29, 30] and test genera-
tion [38, 42]. We consider classes with methods from these
projects whose parameters are of primitive types currently
supported by our learner (i.e., int, bool) or whose parameters

are of complex types that have observer methods (defined
in their interface) whose return types are int or bool. For
the task of learning preconditions for preventing runtime
failures, our evaluation subjects include (1) two open source
projects, Lidgren Network and Data Structures and Algo-
rithms (DSA), and (2) a set of Code Contract benchmarks
from the cccheck static analyzer [12] and benchmarks from
the Hola engine [14]. For the task of learning conditions
for method commutativity in data structures, our evaluation
subjects include data structures available in two open source
projects, QuickGraph and .NET Core. Table 1 shows the data
structures/classes used as our evaluation subjects. The table
also shows the number of classes and the size of code for the
entire project (the individual methods that we consider in
our evaluation are smaller, but they can call various other
methods and our test generator does analyze the larger code
base).

In total, our evaluation subjects include 105 method pairs
for learning commutativity conditions and 121 methods for
learning conditions to prevent runtime failures.

For each data structure and non-primitive type, we imple-
ment abstract equality methods and factory methods. The
equality methods compare object states for equivalence, and
the factory methods (which Pex exploits) create objects from
primitive types. For each method or method pair in our eval-
uation, we use all and only the public observer methods in
the interface of their respective class.
Table 2 summarizes our evaluation results, including sta-

tistics on our subjects, statistics on learning, and details on
validation with respect to Randoop [28] (a test generator)
and ground truth.

6.1 RQ: Learning Ideal Preconditions

We assess the effectiveness of our framework in two main
aspects: one being quality of the learned preconditions while
the other being the efficiency of precondition learning.
Quality of learned preconditions. We examine in two
ways whether the learned preconditions are indeed truly
ideal. First, we use another test generator compatible with
C# programs, namely Randoop [28], to check whether a pre-
condition is safe. If Randoop can generate an invalid input
allowed by the learned precondition, then it is clear that
the learned precondition is not truly safe (despite the fact
that Pex did not find such input). After this first step, we
manually inspect each case where Randoop cannot generate
inputs to show unsafety, deriving the truly ideal precondi-
tion manually and checking whether it is equivalent to the
learned precondition.

Our results shown in Table 2 suggest that learning modulo
a test generator can be effective in learning truly safe and
maximal preconditions, despite the test generator’s incom-
pleteness.

Out of the 105 commutativity cases, we find that Proviso
can learn 73 (∼70%) truly safe and maximal preconditions.
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In addition, Proviso learns 24 other preconditions that are
only truly safe. Overall, ∼92% of the preconditions learned
by Proviso for the commutativity cases are truly safe. For
the 121 exception-prevention cases, we find that Proviso
can learn 105 (∼87%) truly safe and maximal preconditions.
Proviso learns additional 4 preconditions that are only truly
safe.
In multiple cases, Proviso does not learn a truly ideal

precondition due to lacking appropriate observer methods.
For example, a commutativity precondition synthesized
for a .NET benchmark involves checking whether a setter
and getter on a dictionary commute, and Proviso learns a
precondition that is neither truly safe nor truly maximal.
However, if we implement an additional observer method
ContainsValueAt(x), which returns the value at x , then Pro-
viso learns (s1.ContainsValueAt(x) && s1.ContainsKey(y))

|| (!(x == y) && s1.ContainsKey(y)), which is a truly safe
and maximal precondition.

Another example is the commutativity of methods peek()
and pop() in a stack—they commute when the top two el-
ements in the stack are identical. However, this property
turns out to be not expressible using the available observer
methods and the learned precondition is false.

In most cases, however, Proviso does learn truly safe and
maximal preconditions that are natural and easy to read. For
example, for the commutativity of push(x) and push(y), Pro-
viso learns the precondition x == y, which is indeed truly
safe and maximal. A sample of learned preconditions can be
found on the Proviso website2. For learning preconditions
to prevent runtime failures, Proviso performs very well.
Proviso performs well also on the larger open source pro-
grams in Lidregen Network in terms of both correctness and
time spent in learning. A particular case of interest in DSA
is where Proviso is able to learn a truly ideal precondition
[number < 1024] for the toBinary method, which converts
an integer to its binary representation (the constant 1024
is discovered by Proviso). For values of 1024 or higher, an
integer overflow exception occurs deep in .NET library code.
Efficiency of precondition learning.We alsomeasure the
time efficiency of Proviso in learning preconditions. Pro-
viso takes on average ∼740 seconds per method/method pair
to synthesize preconditions.

6.2 On Empirical Comparison with Related Work

It is hard to provide a fair comparison with two closely re-
lated approaches by Padhi et al. [29] and Gehr et al. [18].
The approach by Gehr et al., strictly speaking, does not learn
preconditions. It learns conditions under which two methods
have commuted after their execution; the learned conditions
are expressed over primitive-type parameters and return
values of these two methods (note that, by definition, pre-
conditions for these two methods should not be expressed

2http://madhu.cs.illinois.edu/proviso

using their return values). In addition, the learned conditions
cannot capture properties of object states. The approach by
Padhi et al. [29] learns preconditions while also synthesizing
auxiliary predicates. In this case, the languages for the pro-
grams are different (ours is for C# while theirs is for OCaml),
and a direct tool comparison is hard. However, since our
framework allows any passive learner to be plugged in, we
plug in the passive learner used by Padhi et al. [29, PIE]
and re-produce our evaluation results. The results show that
when the feature sets are fixed, Proviso equipped with Padhi
et al.’s learner has similar effectiveness as Proviso (by de-
fault equipped with the decision-tree learner), but when
features are not provided, Proviso equipped with Padhi et
al.’s learner takes much longer time and even diverges in
some cases.

7 Related Work

Black-box approaches. Ernst et al. [15] proposed Daikon
for dynamically detecting conjunctive Boolean formulas as
likely invariants from black-box executions that gather run-
time state information (method-entry states, method-exit
states); Daikon, seen as a learning algorithm, learns using
only positive counterexamples, and unlike our approach,
does not make any guarantees of safety or maximality.
Our work is most closely related to three black-box ap-

proaches by Padhi et al. [29], Gehr et al. [18], and Sankara-
narayanan et al. [33]. The last two approaches [18, 33] rely
on generating test inputs from sampling feasible truth as-
signment of input predicates or assignments satisfying repre-
sentative formulas in a particular logic, followed by Boolean
learning from positive and negative examples to infer pre-
conditions. However, these approaches do not provide any
guarantees unlike our work, where we guarantee that the
final learned precondition is both safe and maximal with
respect to a testing-based teacher. Padhi et al. [29] proposed
a data-driven learning approach based on feature learning,
including black-box and white-box components. Its black-
box component, PIE, learns a formula from a fixed set of tests.
Its white-box component, VPreGen, includes an iterative re-
finement algorithm that uses counterexamples returned by
a verifier to learn provably safe preconditions. However, the
white-box component does not make any guarantees onmax-
imality as we do. Furthermore, to assure that preconditions
are provably safe, inductive loop invariants must be synthe-
sized, further complicating the problem. In our approach, we
replace the verifier with a testing-based teacher for practical
reasons and handle the accompanying challenges.
Program and expression synthesis. The field of program
synthesis deals with the problem of synthesizing expres-
sions that satisfy a specification. One of the most promising
approaches of synthesizing expressions is counterexample-
guided inductive synthesis (CEGIS) [2], which in fact resem-
bles online learning. In this setting, the target expression is
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Table 2. Evaluation results on benchmarks and open source programs using Proviso. Abbreviations: LOC=total number of Lines of Code
of the class, Met.=total number of methods/method pairs, Obs.=total number of observer methods, #CE=average number of counterexamples,
#Rnd.=average number of rounds, Size=average size of the preconditions, time=average time taken per method (in seconds), #Test=total
number of tests generated by Randoop, #Fail=total number of failing tests found by Randoop, #Safe=number of methods/method pairs
whose preconditions are found safe by Randoop, #Corr.= number of methods/method pairs found by manual inspection to be truly safe and
maximal.

Subjects Learning Framework

Validation

Randoop Manual

Project/Class LOC Met. Obs. #CE #Rnd. Size Time(s) #Test #Fail #Safe #Corr.

Commutativity

Stack 502 10 3 7.9 4.9 1.0 418.2 10117 0 10 8
Set 1847 10 2 11.3 2.5 2.1 493.3 10922 0 10 10
Queue 584 10 3 21.9 10.3 1.0 1646.5 10020 0 10 8
Map 1382 10 3 30.5 5.1 2.7 1230.1 8809 13 9 9
ArrayList 2963 10 4 12.0 4.7 2.6 1212.0 9072 75 9 9
Undirected Graph 327 36 7 13.7 7.0 2.7 1045.2 5708 104 30 16
Binary Heap 335 19 4 42.2 4.6 6.2 872.2 7456 25 17 17

Exceptions

NetOutGoingMessage 785 47 3 9.5 2.8 1.7 515.0 1067 70 44 42
BigInteger 2334 39 2 13.6 3.7 2.6 214.5 2214 178 38 34
Numbers 284 4 0 20.3 60.5 1.8 4589.2 3626 0 4 2
CodeContract 269 21 0 22.4 16.0 1.6 376.9 14170 0 21 21
Hola 933 10 0 47.5 20.9 2.9 428.7 19236 0 10 7

learned in multiple rounds of interaction between a learner
and a verifier. In each round, the learner proposes a candidate
expression and the verifier checks whether the expression
satisfies the specification, and returns counterexamples oth-
erwise. In this sense, we can view our algorithm also as a
CEGIS algorithm, but where the verifier is replaced by an
incomplete testing-based tool. However, there are technical
differences — in program synthesis, the aim would be to find
a formula that precisely classifies the examples, while in our
setting, we are required to learn a classifier that classifies
negative examples precisely, but is allowed to negatively
classify positive examples. Furthermore, we require that a
minimal number of positive counterexamples are classified
negatively; such maximality constraints are not the norm in
program synthesis (indeed some problems involving maxi-
mality have been recently considered [1]).
Decision-tree learning. Decision-tree learning has been
used in several contexts in program synthesis before — in
precondition synthesis [33], in invariant synthesis [16, 17],
in synthesizing piece-wise linear functions [27], etc. Many of
these algorithms have had to change the ID3 algorithm, simi-
lar to our work, so that the algorithm learns a tree consistent
with the samples. The crucial differences in our framework
from such previous work are that we dynamically modify the
classifications of samples from positive to negative when we

discover conflicting counterexamples, and ensure maximal-
ity of preconditions by learning across rounds using inputs
from the testing-based teacher.

8 Conclusion

In this paper, we have presented a novel formalization for
the inference problem of stateful preconditions modulo a test
generator. In this formalization, the quality of the precondi-
tion is based on its safety and maximality with respect to the
test generator. We have further proposed a novel iterative
active learning framework for synthesizing stateful precon-
ditions, and a convergence result for finite hypothesis spaces.
To assess the effectiveness of our framework, we have instan-
tiated our framework for two tasks of specification inference
and evaluated our framework on various C# classes from
well-known benchmarks and open source projects. Our eval-
uation results demonstrate the effectiveness of the proposed
framework.

Acknowledgment

This work was supported in part by National Science Foun-
dation under grant no. CCF-1527395, CNS-1513939, CNS-
1564274, CCF-1816615 and the GEM fellowship.

References

[1] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal
specification synthesis. In POPL 2016.

786



Learning Stateful Preconditions Modulo a Test Generator PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[2] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg,
Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,
Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
2015. Syntax-guided synthesis. In Dependable Software Systems Engi-
neering. NATO Science for Peace and Security Series, D: Information
and Communication Security, Vol. 40.

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling
enumerative program synthesis via divide and conquer. In TACAS
2017.

[4] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. 2005.
Synthesis of interface specifications for Java classes. In POPL 2005.

[5] Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining
Specifications. In POPL 2002.

[6] Angello Astorga, Siwakorn Srisakaokul, Xusheng Xiao, and Tao Xie.
2018. PreInfer: Automatic inference of preconditions via symbolic
analysis. In DSN 2018.

[7] David Brumley, Hao Wang, Somesh Jha, and Dawn Xiaodong Song.
2007. Creating vulnerability signatures using weakest preconditions.
In CSF 2007.

[8] Raymond P. L. Buse and Westley Weimer. 2008. Automatic documen-
tation inference for exceptions. In ISSTA 2008.

[9] Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snuggle-
bug: a powerful approach to weakest preconditions. In PLDI 2009.

[10] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus
Peinado. 2007. Bouncer: Securing software by blocking bad input. In
SOSP 2007.

[11] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Li-
dong Zhou, Lintao Zhang, and Paul Barham. 2005. Vigilante: End-to-
end containment of Internet worms. In SOSP 2005.

[12] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco
Logozzo. 2013. Automatic inference of necessary preconditions. In
VMCAI 2013.

[13] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008.
DySy: Dynamic symbolic execution for invariant inference. In ICSE
2008.

[14] Isil Dillig, Thomas Dillig, Boyang Li, and KenMcMillan. 2013. Inductive
invariant generation via abductive inference. In OOPSLA 2013.

[15] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David
Notkin. 1999. Dynamically discovering likely program invariants
to support program evolution. In ICSE 1999.

[16] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P.
Madhusudan. 2018. Horn-ICE learning for synthesizing invariants
and contracts. In OOPSLA 2018.

[17] Pranav Garg, P. Madhusudan, Daniel Neider, and Dan Roth. 2016.
Learning invariants using decision trees and implication counterex-
amples. In POPL 2016.

[18] Timon Gehr, Dimitar Dimitrov, and Martin T. Vechev. 2015. Learning
commutativity specifications. In CAV 2015.

[19] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-
rected automated random testing. In PLDI 2005.

[20] Maurice Herlihy and Eric Koskinen. 2008. Transactional boosting: A
methodology for highly-concurrent transactional objects. In PPoPP,

2008.
[21] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and

Keshav Pingali. 2011. Exploiting the commutativity lattice. In PLDI
2011.

[22] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. 2007. Optimistic parallelism
requires abstractions. In PLDI 2007.

[23] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin
Rinard. 2014. Sound input filter generation for integer overflow errors.
In POPL 2014.

[24] Ravichandhran Madhavan and Raghavan Komondoor. 2011. Null
dereference verification via overapproximated weakest precondition
analysis. In OOPSLA 2011.

[25] Thomas M. Mitchell. 1997. Machine Learning (1 ed.).
[26] Mangala Gowri Nanda and Saurabh Sinha. 2009. Accurate interproce-

dural null-dereference analysis for Java. In ICSE 2009.
[27] Daniel Neider, Shambwaditya Saha, and P. Madhusudan. 2016. Syn-

thesizing piece-wise functions by learning classifiers. In TACAS 2016.
[28] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-

directed random testing for Java. In OOPSLA 2007.
[29] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven

precondition inference with learned features. In PLDI 2016.
[30] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei, and Bertrand Meyer.

2013. What good are strong specifications?. In ICSE 2013.
[31] J. R. Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1

(1986).
[32] Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark Barrett, and

Morgan Deters. 2017. Refutation-based synthesis in SMT. Formal
Methods in System Design (2017).

[33] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivančić, and
Aarti Gupta. 2008. Dynamic inference of likely data preconditions
over predicates by tree learning. In ISSTA 2008.

[34] Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-
guided precondition inference. In ESOP 2013.

[35] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic
unit testing engine for C. In ESEC/FSE 2005.

[36] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim,
and Mary Jean Harrold. 2009. Fault localization and repair for Java
runtime exceptions. In ISSTA 2009.

[37] Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. 2017. Discovering
relational specifications. In ESEC/FSE 2017.

[38] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de
Halleux, and Zhendong Su. 2011. Synthesizing method sequences
for high-coverage testing. In OOPSLA 2011.

[39] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex: White box test
generation for .NET. In TAP 2008.

[40] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized unit tests.
In ESEC/FSE 2005.

[41] W. E. Weihl. 1988. Commutativity-Based concurrency control for
abstract data types. IEEE Trans. Comput. 37, 12 (1988).

[42] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. 2013. Char-
acteristic studies of loop problems for structural test generation via
symbolic execution. In ASE 2013.

787


	Abstract
	1 Introduction
	2 An Illustrative Example
	3 Problem Formalization of Precondition Synthesis Modulo a Test Generator
	3.1 Observer Methods, Logic for Preconditions, and Testing-Based Teachers
	3.2 Precondition Synthesis Modulo a Testing-Based Teacher

	4 The Learning Framework for Synthesizing Preconditions Modulo a Test Generator
	4.1 Framework Overview
	4.2 Instantiations of the Framework
	4.3 Convergence of Learning

	5 Construction of a Testing-Based Teacher
	5.1 Extracting Counterexamples
	5.2 Implementing the Featurizer

	6 Evaluation
	6.1 RQ: Learning Ideal Preconditions
	6.2 On Empirical Comparison with Related Work

	7 Related Work
	8 Conclusion
	References

