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Abstract

We propose a framework for synthesizing inductive invariants for incomplete verification
engines, which soundly reduce logical problems in undecidable theories to decidable theories.
Our framework is based on the counterexample guided inductive synthesis principle and
allows verification engines to communicate non-provability information to guide invariant
synthesis. We show precisely how the verification engine can compute such non-provability
information and how to build effective learning algorithms when invariants are expressed as
Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in
two verification settings, one in which verification engines need to handle quantified formulas
and one in which verification engines have to reason about heap properties expressed in
an expressive but undecidable separation logic. Our experiments show that our invariant
synthesis framework based on non-provability information can both effectively synthesize
inductive invariants and adequately strengthen contracts across a large suite of programs. This
work is an extended version of a conference paper titled “Invariant Synthesis for Incomplete
Verification Engines”.
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1 Introduction

The paradigm of deductive verification [24,32] combines manual annotations and semi-
automated theorem proving to prove programs correct. Programmers annotate code they
develop with contracts and inductive invariants, and use high-level directives to an under-
lying, mostly-automated logic engine to verify their programs correct. Several mature tools
have emerged that support such verification, in particular tools based on the intermediate ver-
ification language BOOGIE [3] and the SMT solver Z3 [18] (e.g., VCC [13] and DAFNY [42]).

Viewed through the lens of deductive verification, the primary challenges in automating
verification are two-fold. First, even when strong annotations in terms of contracts and induc-
tive invariants are given, the validity problem for the resulting verification conditions is often
undecidable (e.g., in reasoning about the heap, reasoning with quantified logics, and reason-
ing with non-linear arithmetic). Second, the synthesis of loop invariants and strengthenings
of contracts that prove a program correct needs to be automated so as to lift this burden
currently borne by the programmer.

A standard technique to solve the first problem (i.e., intractability of validity checking
of verification conditions) is to build automated, sound but incomplete verification engines
for validating verification conditions, thus skirting the undecidability barrier. Several such
techniques exist; for instance, for reasoning with quantified formulas, tactics such as model-
based quantifier instantiation [28] are effective in practice, and they are known to be complete
in certain settings [44]. In the realm of heap verification, the so-called natural proof method
explicitly aims to provide automated and sound but incomplete methods for checking validity
of verification conditions with specifications in separation logic [12,44,53,55].

Turning to the second problem of invariant generation, several techniques have emerged
that are able to automatically synthesize invariants if the verification conditions fall in
a decidable logic. Prominent among these are interpolation [46] and IC3/PDR [6,20].
Moreover, a class of counterexample guided inductive synthesis (CEGIS) methods have
emerged recently, including the ICE learning model [26] for which various instantiations
exist [10,22,26,27,38,58]. The key feature of the latter methods is a program-agnostic, data-
driven learner that learns invariants in tandem with a verification engine that provides concrete
program configurations as counterexamples to incorrect invariants.

Although classical invariant synthesis techniques, such as HOUDINI [23], are sometimes
used with incomplete verification engines, to the best of our knowledge there is no funda-
mental argument as to why this should work in general. In fact, we are not aware of any
systematic technique for synthesizing invariants when the underlying verification problem
falls in an undecidable theory. When verification is undecidable and the engine resorts to
sound but incomplete heuristics to check validity of verification conditions, it is unclear how
to extend interpolation/IC3/PDR techniques to this setting. Data-driven learning of invariants
is also hard to extend since the verification engine typically cannot generate a concrete model
for the negation of verification conditions when verification fails. Hence, it cannot produce
the concrete configurations the learner needs.

The main contribution of this paper is a general, learning-based invariant synthesis
framework that learns invariants using non-provability information provided by verification
engines. Intuitively, when a conjectured invariant results in verification conditions that cannot
be proven, the idea is that the verification engine must return information that generalizes
the reason for non-provability, hence pruning the space of future conjectured invariants.

Our framework, which we present in Sect.2, assumes a verification engine for an unde-
cidable theory % that reduces verification conditions to a decidable theory Z (e.g., using
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heuristics such as bounded quantifier instantiation to remove universal quantifiers, function
unfolding to remove recursive definitions, and so on) that permits producing models for satis-
fiable formulas. The translation is assumed to be conservative in the sense that if the translated
formula in Z is valid, then we are assured that the original verification condition is %/ -valid.
If the verification condition is found to be not Z-valid (i.e., its negation is satisfiable), on the
other hand, our framework describes how to extract non-provability information from the
2-model. This information is encoded as conjunctions and disjunctions in a Boolean theory
A, called conjunctive/disjunctive non-provability information (CD-NPI), and communicated
back to the learner. To complete our framework, we show how the formula-driven problem of
learning expressions from CD-NPI constraints can be reduced to the data-driven ICE model.
This reduction allows us to use a host of existing ICE learning algorithms and results in a
robust invariant synthesis framework that guarantees to synthesize a provable invariant if one
exists.

However, our CD-NPI learning framework has non-trivial requirements on the verification
engine, and building or adapting appropriate engines is not straightforward. To show that
our framework is indeed applicable and effective in practice, our second contribution is an
application of our technique to two verification domains where the underlying verification is
undecidable:

— Our first setting, presented in Sect. 3, is the verification of dynamically manipulated data-
structures against rich logics that combine properties of structure, separation, arithmetic,
and data. We show how natural proof verification engines [44,53], which are sound but
incomplete verification engines that translate a powerful undecidable separation logic
called DRYAD to decidable logics, can be fit into our framework. Moreover, we imple-
ment a prototype of such a verification engine on top of the program verifer Boogie [3]
and demonstrate that this prototype is able to fully automatically verify a large suite of
benchmarks, containing standard algorithms for manipulating singly and doubly linked
lists, sorted lists, as well as balanced and sorted trees. Automatically synthesizing invari-
ants for this suite of heap-manipulating programs against an expressive separation logic
is very challenging, and we do not know of any other technique that can automatically
prove all of them. In fact, heap-based reasoning is already challenging when invariants
are given, and even then the number of automatic tools able to handle heap verification
for rich separation logic specifications is low. For instance, the SL- COMP benchmarks
for separation logic [62] are still at the level of logic solvers for entailment in separation
logic, rather than for program verification. Thus, we have to leave a comparison to other
approaches for future work.

— The second setting, presented in Sect.4, addresses the verification of programs against
specifications with universal quantification, which renders verification undecidable in
general. In this situation, automated verification engines commonly use a variety of
bounded quantifier instantiation techniques (such as E-matching, triggers, and model-
based quantifier instantiation) to replace universal quantification by conjunctions over
a specific set of terms. This soundly reduces satisfiability checking of the negated veri-
fication conditions to a decidable theory. Based on such techniques, we implement our
framework and we show that it is able to effectively generate invariants that prove a
challenging suite of programs correct against universally quantified specifications.

To the best of our knowledge, our framework is the first to systematically address the
problem of invariant synthesis for incomplete verification engines that work by soundly
reducing undecidable logics to decidable ones. We believe our experimental results provide
the first evidence of the tractability of this important problem.
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This work in an extended version of a conference paper [48]. Compared to the conference
version, this work contains all proofs, an illustrative example of our framework, a section
discussing the limitations of our framework (Sect.2.4), as well as an extended description of
the implementation of our framework for verifying heap-manipulating programs (Sect. 3). In
addition, this work presents a second case study, namely the implementation of our framework
for verifying programs against specifications with universal quantification as well as an
empirical evaluation for this setting (Sect.4), which was not contained in the conference

paper.
Related Work

Techniques for invariant synthesis include abstract interpretation [15], interpolation [46],
IC3 [6], predicate abstraction [2], abductive inference [19], as well as synthesis algorithms
that rely on constraint solving [14,29,30]. Complementing them are data-driven invariant
synthesis approaches that are based on machine learning. Examples include techniques that
learn likely invariants, such as Daikon [21], and techniques that learn inductive invariants,
such as HOUDINI [23], ICE [26], and Horn-ICE [10,22]. The latter typically requires a teacher
that can generate counter-examples if the conjectured invariant is not adequate or inductive.
Classically, this is possible only when the verification conditions of the program fall in
decidable logics. In this paper, we investigate data-driven invariant synthesis for incomplete
verification engines and show that the problem can be reduced to ICE learning if the learning
algorithm learns from non-provability information and produces hypotheses in a class that is
restricted to positive Boolean formulas over a fixed set of predicates. Data-driven synthesis
of invariants has regained recent interest [25,26,38,51,52,57-61,63], and our work addresses
an important problem of synthesizing invariants for programs whose verification conditions
fall in undecidable fragments.

Our application to learning invariants for heap-manipulating programs builds upon the
logic DRYAD [53,55], and the natural proof technique line of work for heap verification
developed by Qiu et al. Techniques, similar to DRYAD, for automated reasoning of dynam-
ically manipulated data structure programs have also been proposed in [11,12]. However,
unlike our current work, none of these works synthesize heap invariants. Given invariant
annotations in their respective logics, they provide procedures to validate if the verification
conditions are valid. There has also been a lot of work on synthesizing invariants for separa-
tion logic using shape analysis [9,41,56]. However, most of these techniques are tailored for
memory safety and shallow properties, but they do not handle rich properties that check full
functional correctness of data structures as we do in this work. Interpolation has also been
suggested recently to synthesize invariants involving a combination of data and shape prop-
erties [1]. It is, however, not clear how the technique can be applied to a more complicated
heap structure, such as an AVL tree, where shape and data properties are not cleanly separated
but are intricately connected. Recent work also includes synthesizing heap invariants in the
logic from [33] by extending IC3 [34,35].

In this work, our learning algorithm synthesizes invariants over a fixed set of predicates.
When all programs belong to a specific class, such as the class of programs manipulating data
structures, these predicates can be uniformly chosen using templates. Investigating automated
ways for discovering candidate predicates is a very interesting future direction. Related work
in this direction includes recent works [51,52].
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candidate
invariant -
Partially annotated Verification Engine in .
program Invariant
Synthesizer
generate VCs in %
VCin 2 over
D Em— reduce VCs to 7 hypothesis
9 solver class 2 with
. constraints in %
extract NPI in # >
2 model NPI in #

L——— all VCs are Z-valid; program proven correct

A —  the hypothesis class of invariants

% -  the underlying theory of the program, assumed to be undecidable

2  —  the theory that the verification engine soundly reduces verification conditions to; decidable
and can produce models

% —  the theory of propositional logic that the verification engine uses to communicate to the
invariant synthesis engine

Fig. 1 A non-provability information (NPI) framework for invariant synthesis

2 An Invariant Synthesis Framework for Incomplete Verification
Engines

In this section, we develop our framework for synthesizing inductive invariants for incomplete
verification engines, using a counter-example guided inductive synthesis approach. We do this
in a setting where the hypothesis space consists of formulas that are Boolean combinations
of a fixed set of predicates &2, which need not be finite for the general framework (although
we assume & to be a finite set of predicates when developing concrete learning algorithms
later). For the rest of this section, let us fix a program P that is annotated with assertions
(and possibly with some partial annotations describing pre-conditions, post-conditions, and
assertions). Moreover, we say that a formula « is weaker (stronger) than a formula g in a
logic Z if-o B = a (F¢ o = B) where -« ¢ means that ¢ is valid in .Z.

Figure 1 depicts our general framework of invariant synthesis when verification is unde-
cidable. We fix several parameters for our verification effort. First, let us assume a uniform
signature for logics in terms of constant symbols, relation symbols, functions, and types. For
simplicity of exposition, we use the same syntactic logic for the various logics %, 2, # in
our framework as well as for the logic .77 used to express invariants.

Let us fix % as the underlying theory that is ideally needed for validating the verification
conditions that arise for the program; we presume validity of formulas in % is undecidable.
Since 7 is an undecidable theory, the engine will resort to sound approximations (e.g., using
bounded quantifier instantiations using mechanisms such as triggers [17], bounded unfolding
of recursive functions, or natural proofs [44,53]) to reduce this logical task to a decidable
theory 2. This reduction is assumed to be sound in the sense that if the resulting formulas in
9 are valid, then the verification conditions are valid in % as well. If a formula is found not
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valid in 9, then we require that the logic solver for Z returns a model for the negation of the
formula.! Note that this model may not be a model for the negation of the formula in % .

Moreover, we fix a hypothesis class 7 for invariants consisting of positive Boolean
combination of predicates over a fixed set of predicates <. Note that considering only
positive formulas over & is not a restriction in general because one can always add negations
of predicates to Z, thus effectively synthesizing any Boolean combination of predicates (in
negation normal form). The restriction to positive Boolean formulas is in fact desirable as it
allows restricting invariants to not negate certain predicates, which is useful when predicates
have intuitionistic definitions (as several recursive definitions of heap properties do).

The invariant synthesis proceeds in rounds, where in each round the synthesizer proposes
invariants in .7#. The verification engine generates verification conditions in accordance
to these invariants in the underlying theory % . It then proceeds to translate them into the
decidable theory 7, and gives them to a solver that decides their validity in the theory Z. If
the verification conditions are found to be Z-valid, we have successfully proven the program
correct by virtue of the fact that the verification engine reduced verification conditions in a
sound fashion to 2.

However, if the formula is found not to be Z-valid, the solver returns a Z-model for its
negation. The verification engine then extracts from this model certain non-provability infor-
mation (NPI), expressed as Boolean formulas in a Boolean theory %, which captures more
general reasons why the verification failed (the rest of this section is devoted to developing
this notion of non-provability information). This non-provability information is communi-
cated to the synthesizer, which then proceeds to synthesize a new conjecture invariant that
satisfies the non-provability constraints provided in all previous rounds.

In order for the verification engine to extract meaningful non-provability information, we
make the following natural assumption, called normality, which essentially states that the
engine can do at least some minimal Boolean reasoning (if a Hoare triple is not provable,
then Boolean weakenings of the precondition and Boolean strengthening of the post-condition
must also be unprovable):

Definition 1 A verification engine is normal if it satisfies two properties:

1. If the engine cannot prove the validity of the Hoare triple {«}s{y} and % § = y, then
it cannot prove the validity of the Hoare triple {«}s{5}.

2. If the engine cannot prove the validity of the Hoare triple {y }s{8} and % y = 4, then
it cannot prove the validity of the Hoare triple {§}s{B]}.

Throughout this section, we use a running example to illustrate the components of our
framework. Let us begin by introducing this example and specific logics %, 2, and 4.

Example 1 Consider the program in Fig. 2. This program is taken from the Software Verifica-
tion Competition [37] and computes the inverse B of a bijective (i.e., injective and surjective)
mapping A. Note that the post-condition of this program expresses that the mapping B is
injective. The program appears with the name “inverse” in Sect.4.

To prove this program correct, one needs to specify adequate invariants at the loop header
and before the return statement of the function inverse. We wish to synthesize these invariants.

For simplicity, let us assume we are provided with a small set & = {p1, p2, p3} of
predicates that serve as the basic building blocks for the invariants to be synthesized: p; at

! Note that our framework requires model construction in the theory Z. Hence, incomplete logic solvers
for 7 that simply time out after some time threshold or search for a proof of a particular kind and give up
otherwise are not suitable candidates.
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int A[], B[];
int N; axiom (N >0);
bool inIlmage(int i) { return true; }

procedure inverse ()
requires (Vx,y. 0<x<y<N = A[x]#A[y]); // A is injective
requires (Vx.0<x<NAinlmage(x) = (Iy.0<y<NAA[y|=x)); // A is surjective
ensures (Vx,y.0<x<y<N = B[x]#B[]): // B is injective
{
int i = 0;
while (i < N)
Synthesizelnv (Vx. 0 <x<i = B[A[x]]=x): // pi
{
B[A[i]] = i
i =1+ 1;
}
Synthesizelnv (Vx. 0<x<N = AB[x]|=x, // p»
Vx. 0 <x < NAinlmage(x) => A[B[x]|=x); // p3
return ;

}

Fig. 2 Synthesizing invariants for the program that constructs an inverse B of a bijective (i.e., injective and
surjective) mapping A, taken from the Verified software competition [37]

the loop header and p», p3 before the return statement. Therefore, the task is to synthesize
adequate invariants for this program over the predicates 2.2
For this specific verification task, we choose

— the universally quantified theory of arrays as undecidable theory %/ .

Moreover, we assume a verification engine that soundly reduces verification conditions in
U to

— the decidable theory Z of linear arithmetic and uninterpreted functions by means of
bounded quantifier instatiation.

Finally, we fix
— propositional logic as the Boolean theory 4.

Note the constant Boolean function inlmage is crucially required to validate certain verifica-
tion conditions by triggering appropriate quantifier instantiations in the surjectivity condition.
Moreover, note that a verification engine using the theories %7 and & as above is normal. O

In Sect.2.1, we now develop an appropriate language to communicate non-provability
constraints, which allow the learner to appropriately weaken or strengthen a future hypothe-
sis. It turns out that pure conjunctions and pure disjunctions over &7, which we term CD-NPI
constraints (conjunctive/disjunctive non-provability information constraints), are sufficient
for this purpose. We also describe concretely how the verification engine can extract this
non-provability information from Z-models that witness that negations of VCs are satisfi-
able. Then, in Sect.2.2, we show how to build learners for CD-NPI constraints by reducing
this learning problem to another, well-studied learning framework for invariants called ICE
learning. Finally, Sect. 2.3 argues the correctness of our framework, while Sect. 2.4 discusses
its limitations.

2 In general, one starts with a much larger set of candidate predicates that are automatically generated using
program/specification-dependent heuristics.
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2.1 Conjunctive/Disjunctive Non-provability Information

We assume that the underlying decidable theory & is stronger than propositional theory %,
meaning that every valid statement in £ is valid in & as well. The reader may want to
keep the following as a running example where & is the decidable theory of uninterpreted
functions and linear arithmetic, say. In this setting, a formula is #-valid if, when treating
atomic formulas as Boolean variables, the formula is propositionally valid. For instance,
fx) =y = f(f(x)) = f(y) will not be #-valid though it is Z-valid, while f(x) =
yV=(f(x) =y)is £-valid.

To formally define CD-NPI constraints and their extraction from a failed verification
attempt, let us first introduce the following notation. For any % -formula ¢, let approx(¢)
denote the Z-formula that the verification engine generates such that the #-validity of
approx () implies the % -validity of ¢. Moreover, for any Hoare triple of the form {a}s{8},
let VC({a}s{B}) denote the verification condition in % corresponding to the Hoare triple
that the verification engine generates.

For the sake of a simpler exposition, let us assume that

1. the program has a single annotation hole A where we need to synthesize an inductive
invariant to prove the program correct; and

2. every snippet s of the program for which a verification condition is generated has been
augmented with a set of ghost variables gi, ..., g, that track the predicates p1, ..., p,
over which the learner synthesizes the invariant (i.e., these ghost variables are assigned
the values of the predicates).

As ashorthand notation, we denote the values of the ghost variables before the execution of the
snippet s by v = (vy, ..., v,) and their values after the execution of s by v/ = (v{, ..., v)).

Suppose now that the learner conjectures an annotation y as an inductive invariant for the
annotation hole A, and the verification engine fails to prove the verification condition corre-
sponding to a Hoare triple {«}s{8}, where either «, B, or both could involve the synthesized
annotation. This means that the negation of approx(V C ({a}s{y})) is Z-satisfiable, and the
verification engine needs to extract non-provability information from a model of it. To this
end, the verification engine first extracts the values v and v’ of the ghost variables before
and after the execution of s. Then, it generates one of three different types of non-provability
information, depending on where the annotation appears in a Hoare triple {o}s{f} (either in
o, in B, or in both). We now handle all three cases individually.

— Assume the verification of a Hoare triple of the form {a}s{y} fails (i.e., the veri-

fication engine cannot prove a verification condition where the pre-condition « is a
user-supplied annotation and the post-condition is the synthesized annotation y’). Then,
approx(V C({a}s{y})) is not Z-valid, and the decision procedure for & would generate
a model for its negation.
Since y is a positive Boolean combination, the reason why v’ does not satisfy y is due
to the variables mapped to false by v/, as any valuation extending this will not sat-
isfy y. Intuitively, this means that the Z-solver is not able to prove the predicates in
Praise = {pi | vlf = false}. In other words, {ot}s{\/ Pfaisc} is unprovable (a witness
to this fact is the model of the negation of approx(V C ({«}s{y})) from which the values
v’ are derived). Note that any invariant y’ that is stronger than \/ Pyqjs. Will result in
an unprovable verification condition due to the verification engine being normal. Con-
sequently we can choose x = \/ Pryse as the weakening constraint, demanding that
future invariants should not be stronger than .
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The verification engine now communicates x to the synthesizer, asking it never to conjec-
ture in future rounds invariants y” that are stronger than x (i.e., such that ¥4 y” = x).

— The next case is when a Hoare triple of the form {y}s{f} fails to be proven (i.e., the
verification engine cannot prove a verification condition where the post-condition g is a
user-supplied annotation and the pre-condition is the synthesized annotation y). Using
similar arguments as above, the conjunction n = A\{p; | vi = true} of the predicates
mapped to true by v in the corresponding Z-model gives a stronger precondition 7 such
that {n}s{a} is not provable. Hence, 1 is a valid strengthening constraint. The verification
engine now communicates 1 to the synthesizer, asking it never to conjecture in future
rounds invariants y” that are weaker than n (i.e., such that ¥ 4 n = y”).

— Finally, consider the case when the Hoare triple is of the form {y}s{y} and fails to
be proven (i.e., the verification engine cannot prove a verification condition where the
pre- and post-condition is the synthesized annotation y). In this case, the verification
engine can offer advice on how y can be strengthened or weakened to avoid this model.
Analogous to the two cases above, the verification engine extracts a pair of formulas
(n, x), called an inductivity constraint, based on the variables mapped to frue by v and
to false by v'. The meaning of such a constraint is that the invariant synthesizer must
conjecture in future rounds invariants y” such that either ¥ n = y” or¥» v" = x
holds.

This leads to the following scheme, where y denotes the conjectured invariant:

— When a Hoare triple of the form {a}s{y} fails, the verification engine returns the %-
formula \/ilv,f: false Pi @S @ weakening constraint.

— When a Hoare triple of the form {y}s{8} fails, the verification engine returns the %-
formula /\ilvi:lm . Di as a strengthening constraint.

— When a Hoare triple of the form {y}s{y} fails, the verification engine returns the pair
(Nijyi=true Pi> \/i\vlf:false pi) of #-formulas as an inductivity constraint.

It is not hard to verify that the above formulas are proper strengthening and weaken-
ing constraints in the sense that any inductive invariant must satisfy these constraints. This
motivates the following form of non-provability information.

Definition 2 (CD-NPI Samples) Let 2 be a set of predicates. A CD-NPI sample (short for
conjunction-disjunction-NPI sample) is a triple © = (W, S, I) consisting of

— afinite set W of disjunctions over & (weakening constraints);

— afinite set S of conjunctions over & (strengthening constraints); and

— afinite set / of pairs, where the first element is a conjunction and the second is a disjunction
over & (inductivity constraints).

An annotation y is consistent with a CD-NPI sample & = (W, S, 1) if ¥ y = x for
each xy € W, ¥4 n = y foreachn € S,and¥ g n = y or¥% y = x foreach (n, x) € I.

A CD-NPI learner is an effective procedure that synthesizes, given an CD-NPI sample,
an annotation y consistent with the sample. In our framework, the process of proposing
candidate annotations and checking them repeats until the learner proposes a valid annotation
or it detects that no valid annotation exists (e.g., if the class of candidate annotations is finite
and all annotations are exhausted). We comment on using an CD-NPI learner in this iterative
fashion in the next section.

Example 2 Let us continue Example 1 (on Page 6) and assume that the learner conjectures
yr = p1 as the loop invariant and yg = pa A p3 as the invariant at the return statement.
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Moreover, suppose that the verification condition VC({yr}s{yr}) along the path from the
loop exit to the return statement, though valid in the undecidable theory %, is not provable
in the decidable theory Z (i.e., approx(V C ({yr}s{yr})) is not valid).

In this situation, the Z-solver returns a model .# for the negation of the approximated
verification condition approx(V C ({yr}s{yr})). The verification engine now inspects this
model and extracts the values of the predicates pi, p2, and p3. As explained above, we assume
that the program is equipped with ghost variables that track the values of all predicates (in
our case g1, g2, and g3), and a verification engine can simply extract the value of a predicate
from the value of the corresponding ghost variable in the model.

For this particular verification condition, let us assume that .Z(g1) = true, .#(g2) =
false,and .# (g3) = true,indicating that p; and p3 hold in.#, while p, does not hold. From
this information, the verification engine constructs a pair of formulas (7, x) withn = p; and
X = p2, which it communicates as an inductivity constraint to the learner. Intuitively, this
constraint means that the verification condition obtained by substituting y; with 1 and yg
with y is itself not provable. In subsequent rounds, the learner thus needs to conjecture only
such invariants where y;, is not weaker than n (i.e., ¥ p1 = yL) or yg is not stronger than
x (.e.,¥2 yr = p2). Note that both 1 and x are formulas in the logic % since we assume
a uniform signature for all logics (i.e., p1, p2, and p3 are seen as propositional variables in
A). Moreover, note that the formula 7 is a conjunction with a single conjuct, whereas the
formula x is a disjunction with a single disjunct. O

2.2 Building CD-NPI Learners

Let us now turn to the problem of building efficient learning algorithms for CD-NPI con-
straints. To this end, we assume that the set of predicates &7 is finite.

Roughly speaking, the CD-NPI learning problem is to synthesize annotations that are
positive Boolean combinations of predicates in 22 and that are consistent with a given CD-
NPI sample. Though this is a learning problem where samples are formulas, in this section
we reduce CD-NPI learning to a learning problem from data. In particular, we show that CD-
NPI learning reduces to the ICE learning framework for learning positive Boolean formulas.
The latter is a well-studied framework, and the reduction allows us to use efficient learning
algorithms developed for ICE learning in order to build CD-NPI learners.

We now first recap the ICE-learning framework and then reduce CD-NPI learning to ICE
learning. Finally, we briefly sketch how the popular HOUDINIalgorithm can be seen as an
ICE learning algorithm, which, in turn, allows us to use HOUDINIas an CD-NPI learning
algorithm.

The ICE Learning Framework

Although the ICE learning framework [26] is a general framework for learning inductive
invariants, we here consider the case of learning Boolean formulas. To this end, let us fix a
set B of Boolean variables. Moreover, let .77 be a subclass of positive Boolean formulas over
B (i.e., Boolean combinations of variables from B without negation). This class, called the
hypothesis class, specifies the admissible solutions to the learning task.

The objective of the (passive) ICE learning algorithm is to learn a formula in .7 from
positive examples, negative examples, and implication examples. More formally, if ¥ is the
set of valuations v: B — {true, false} (mapping variables in B to true or false), then an
ICE sample is a triple .¥ = (S4+, S—, S=) where S; C 7 is a set of positive examples,
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S_ C ¥ is a set of negative examples, and S—, C ¥ x ¥ is a set of implications. Note
that positive and negative examples are concrete valuations of the variables in B, and the
implication examples are pairs of such concrete valuations.

A formula ¢ is said to be consistent with an ICE sample .7 if it satisfies the following
three conditions:®> v |= ¢ for each v € S;, v J= ¢ foreach v € S_, and v; = ¢ implies
vy = ¢, for each (v, vp) € S=.

In algorithmic learning theory, one distinguishes between passive learning and iterative
learning. The former refers to a learning setting in which a learning algorithm is confronted
with a finite set of data and has to learn a concept that is consistent with this data. Using our
terminology, the passive ICE learning problem for a hypothesis class .7 is then

“given an ICE sample .7, find a formula in ¢ that is consistent with ..

Recall that we here require the learning algorithm to learn positive Boolean formulas, which
is stricter than the original ICE framework [26].

Iterative learning, on the other hand, is the iteration of passive learning where new data is
added to the sample from one iteration to the next. In a verification context, this new data is
generated by the verification engine in response to incorrect annotations and used to guide the
learning algorithm towards an annotation that is adequate to prove the program. To reduce our
learning framework to ICE learning, it is therefore sufficient to reduce the (passive) CD-NPI
learning problem described above to the passive ICE learning problem. We do this next.

Reduction of Passive CD-NPI Learning to Passive ICE Learning

Let JZ be a subclass of positive Boolean formulas. We reduce the CD-NPI learning problem
for .27 to the ICE learning problem for .7#. The main idea is to (a) treat each predicate p € &
as a Boolean variable for the purpose of ICE learning and (b) to translate a CD-NPI sample &
into an equi-consistent ICE sample .7, meaning that a positive Boolean formula is consistent
with & if and only if it is consistent with .. Then, learning a consistent formula in the
CD-NPI framework reduces to learning a consistent formula in the ICE learning framework.

The following lemma will us help translate between the two frameworks. Its proof is
straightforward and follows from the following observation about any positive formula «: if
a valuation v sets a larger subset of variables to true than v’ does and v/ |= o, then v = «
holds as well.

Lemma 1 Let v be a valuation of &2 and o be a positive Boolean formula over 2. Then, the
Sollowing holds:

—vEaifandonly if F5 (/\plv(p):,rue p) = «o (and, therefore, v [~ « if and only if
Yz (/\.P\v(p)=true.p) = a).
~vaifandonlyif ¥z o = (\/ ,1y(p)=faise P)-

This motivates our translation, which relies on two functions, ¢ and d. The function ¢
translates a conjunction A J, where J € 22, into the valuation

c(/\ J) = v with v(p) = rrueif and only if p € J.

The function d, on the other hand, translates a disjunction \/ J, where J C 22 is a subset of
propositions, into the valuation

d(\/ J) = v with v(p) = falseif andonlyif p € J.

3 In the following, = denotes the usual satisfaction relation.
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By substituting v in Lemma 1 with ¢(/\ J) andd(\/ J), respectively, one immediately obtains
the following result.

Lemma2 Let J C & and a be a positive Boolean formula over 2. Then, the following
holds:

- ¢(A\J) Eaifandonly if 5 \J = o (and, therefore, c(\ J) ¥ o if and only if
¥ /\J:>O[).
- d(\/J) Eaifandonlyif ¥z a=\/J.

Based on the functions c and d, the translation of a CD-NPI sample into an equi-consistent
ICE sample is as follows.

Definition 3 Given a CD-NPI sample & = (W, S, I), the ICE sample .5 = (5S4, S—, S=)
is defined by

~ Se={dV DIV T ew):
- S_={c(ADINJ €S} and
= S = {(cCA DAV ) | (N V D) € 1.

By virtue of the lemma above, we can now establish the correctness of the reduction from
the CD-NPI learning problem to the ICE learning problem as follows.

Theorem1 Let & = (W, S, I) be a CD-NPI sample, Ss = (S+, S—, S=) the ICE sample
as in Definition 3, y a positive Boolean formula over &. Then, y is consistent with S if and
only if y is consistent with /.

Proof LetS = (W, S, I) be an CD-NPI sample, and let.s = (S, S—, S—) the ICE sample
as in Definition 3. Moreover, let y be a positive Boolean formula. We prove Theorem 1 by
considering each weakening, strengthening, and inductivity constraint together with their
corresponding positive, negative, and implication examples individually.

— Pick a weakening constraint \/J € W, and let v € Sy with v = d(\/J) be the
corresponding positive sample. Moreover, assume that y is consistent with & and, thus,
¥z vy = \/ J. By Lemma 2, this is true if and only ifd(\/ J) = y. Hence, v = y.
Conversely, assume that y is consistent with .. Thus, v = y, which means d (\/ J ) Ey.
By Lemma 2, this is true if and only if ¥z y = \/ J.

— Pick a strengthening constraint A\ J € S, and let v € S_ with v = ¢(/\ J) be the
corresponding negative sample. Moreover, assume that y is consistent with & and, thus,
¥ A\ J = y.ByLemma 2, this is true if and only if ¢(/\ J) & y. Hence, v j~ y.
Conversely, assume that y is consistent with .. Thus, v = y, which means c( AJ ) Ey.
By Lemma 2, this is true if and only if ¥z A\ J = y.

— Following the definition of implication, we split the proof into two cases, depending
on whether ¥4 N\J = y or¥g y = \/J (and v; £ y or vy = y for the reverse
direction). However, the proof of the former case uses the same arguments as the proof for
strengthening constraints, while the proof of the latter case uses the same arguments as
the proof for weakening constraints. Hence, combining both proofs immediately yields
the claim. O

Let us illustrate the reduction of Definition 3 with an example.

Example 3 We continue Example 2 (on Page 10), in which the verification engine returned
an inductivity constraint (1, x) with n = p; and x = p;. The task of the learner is now
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to construct invariants where y; is not weaker than n (i.e., ¥ p1 = yr) or yg is not
stronger than x (i.e., ¥ yr = p2). To simplify this example, let us assume that the CD-
NPI sample & = (W, S, I) of the learner was initially empty and now only contains the
returned inductivity constraint (py, p2) (i.e., W =S =@ and I = {(p1, p2)}).

As described above, our learner works by reducing the CD-NPI learning problem to ICE
learning. More precisely, the learner translates its CD-NPI sample & = (W, S, I) to an
equisatisfiable ICE sample . = (S4+, S—, S= ), where the elements of the ICE sample are
valuations v: & — {true, false}. For the sake of simplicity, we write these functions as
Boolean vectors of length three.

For the actual translation, the learner applies the functions ¢ and d described above. Given
the inductivity constraint (py, p2), it constructs the implication constraint

(c(pp), d(p2)) = ((1,0,0), (1,0, 1))

and adds to its ICE sample (recall that p; is in fact a conjunction with a single conjunct,
while p, is a disjunction with a single disjunct). Thus, the learner obtains the ICE sample
e with Sy = S_ =@ and S, = ((1,0,0), (1,0, 1)). Note that & and . are in fact
equisatisfiable, as stated by Theorem 1. O

ICE Learners for Boolean Formulas

The reduction above allows us to use any ICE learning algorithm in the literature that syn-
thesizes positive Boolean formulas. As we have mentioned earlier, we can add negations of
predicates as first-class predicates and, hence, synthesize invariants over the more general
class of all Boolean combinations as well.

The problem of passive ICE learning for one round, synthesizing a formula that satisfies
the ICE sample, can usually be achieved efficiently and in a variety of ways. However, the
crucial aspect is not the complexity of learning in one round but the number of rounds it
takes to converge to an adequate invariant that proves the program correct. When the set &
of candidate predicates is large (hundreds in our experiments), since the number of Boolean
formulas over & is doubly exponential in n = | 7|, building an effective learner is not easy.

However, there is one class of formulas that are particularly amenable to efficient ICE
learning: conjunctions of predicates over Z. For this specific case, ICE learning algorithms
exist that promise learning the invariant in a linear number of rounds (provided one exists
expressible as a conjunct over £?) [23,50]. Note that this learning is essentially finding an
invariant in a hypothesis class J# of size 2" in a linear number of rounds.

HouDINI [23] is such a learning algorithm for conjunctive formulas. Though it is typically
seen as a particular way to synthesize invariants, it is a prime example of an ICE learner for
conjuncts, as described in the work by Garg et al. [26]. In fact, Houdini is similar to the
classical PAC learning algorithm for conjunctions [36], but extended to the ICE model. The
time HOUDINI spends in each round is polynomial in the size of the sample, and it is guaranteed
to converge to an invariant in at most n + 1 rounds (or reports that no conjunctive invariant
over & exists). In our applications, we use this ICE learner to build a CD-NPI learner for
conjunctions.

Example 4 Let us continue Example 3 and assume that the learner uses HOUDINIas ICE
learning algorithm. Given the ICE sample .5, the learner now constructs the invariants
yr = p1 and yg = p3. Note that these formulas are consistent with both the ICE sample
% and the CD-NPI sample G.
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With this new hypothesis, the verification engine can prove all verification conditions of
the program valid in the theory 2. At this point, our invariant synthesis procedure terminates
with these as adequate inductive invariants. O

2.3 Correctness and Convergence of the Invariant Learning Framework

To state the main result of this paper, let us first assume that the set & of predicates is finite.
We comment on the case of infinitely many predicates at the end of this section.

Theorem 2 Assume a normal verification engine for a program P to be given. Moreover, let
P be a finite set of predicates over the variables in P and 7 a hypothesis class consisting
of positive Boolean combinations of predicates in . If there exists an annotation in 7 that
the verification engine can use to prove P correct, then the CD-NPI framework described in
Sect. 2.1 is guaranteed to converge to such an annotation in finite time.

Proof The proof proceeds in two steps. First, we show that a normal verification engine is
honest, meaning that the non-provability information returned by such an engine does not rule
out any adequate and provable annotation. Second, we show that any consistent learner (i.e.,
a learner that only produces consistent hypotheses), when paired with an honest verification
engine, makes progress from one round to another. Finally, we combine both results to show
that the framework eventually converges to an adequate and provable annotation.

Honesty of the verification engine We show honesty of the verification engine by contra-
diction.

— Suppose that the verification replies to a candidate invariant y proposed by the learner

with a weakening constraint x because it could not prove the validity of the Hoare triple
{a}s{y}. This effectively forces any future conjecture y’ to satisfy ¥4 y' = x.
Now, suppose that there exists an invariant § such that -4 § = x and the verification
engine can prove the validity of {«}s{8} (in other words, the adequate invariant § is ruled
out by the weakening constraint x ). Due to the fact that the verification engine is normal
(in particular, by contraposition of Part 1 of Definition 1), this implies that the verification
engine can also prove the validity of {a}s{y }. However, this is a contradiction to x being
a weakening constraint.

— Suppose that the verification engine replies to a candidate invariant y proposed by the
learner with a strengthening constraint 7 because it could not prove the validity of the
Hoare triple {y}s{8}. This effectively forces any future conjecture y to satisfy ¥z n =

/

v
Now, suppose that there exists an invariant § such that -4 n = § and the verification
engine can prove the validity of {§}s{8} (in other words, the adequate invariant ¢ is ruled
out by the weakening constraint 7). Due to the fact that the verification engine is normal
(in particular, by contraposition of Part 2 of Definition 1), this implies that the verification
engine can also prove the validity of {n}s{f}. However, this is a contradiction to n being
a strengthening constraint.

— Combining the arguments for weakening and strengthening constraints immediately
results in a contradiction for the case of inductivity constraints as well.

Progress of the learner Now suppose that the learning algorithm is consistent, meaning
that it always produces an annotation that is consistent with the current sample. Moreover,
assume that the sample in iteration i € N is &; and the learner produces the annotation y;. If
y; 1s inadequate to prove the program correct, the verification engine returns a constraint c.
The learner adds this constraint to the sample, obtaining the sample &; ;1 of the next iteration.

@ Springer



A Learning-Based Approach to Synthesizing Invariants for Incomplete Verification Engines 1537

Since verification with y; failed, which is witnessed by ¢, we know that y; is not consistent
with c. The next conjecture y; 41, however, is guaranteed to be consistent with &; 11 (which
contains ¢) because the learner is consistent. Hence, y; and ;41 are semantically different.
Using this argument repeatedly shows that each annotation y; that a consistent learner has
produced is semantically different from any previous annotation y; for j < i.

Convergence We first make two observations.

1. The number of semantically different hypotheses in the hypothesis space .7 is finite
because the set & is finite. Recall that .7¢ is the class of all positive Boolean combinations
of predicates in &.

2. Due to the honesty of the verification engine, every annotation that the verification engine
can use to prove the program correct is guaranteed to be consistent with any sample
produced during the learning process.

Now, suppose that there exists an annotation that the verification engine can use to prove
the program correct. Since the learner is consistent, all conjectures produced during the learn-
ing process are semantically different. Thus, the learner will at some point have exhausted
all incorrect annotations in .2 (due to Observation 1). However, there exists at least one
annotation that the verification engine can use to prove the program correct. Moreover, any
such annotation is guaranteed to be consistent with the current sample (due to Observation 2).
Thus, the annotation conjectured next is necessarily one that the verification engine can use
to prove the program correct. O

Under certain realistic assumptions on the CD-NPI learning algorithm, Theorem 2 remains
true even if the number of predicates is infinite. An example of such an assumption is that
the learning algorithm always conjectures a smallest consistent annotation with respect to
some fixed total order on J#. In this case, one can show that such a learner will at some
point have proposed all inadequate annotation up to the smallest annotation the verification
engine can use to prove the program correct. It will then conjecture this annotation in the
next iteration. A correctness proof of this informal argument in a more general setting, called
abstract learning frameworks for synthesis, has been given by Loding, Madhusudan, and
Neider [43].

2.4 Limitations

One limiting factor is the effort and knowledge required to generate a set of suitable predicates
over which to search for invariants. For several domains of programs and types of specifi-
cations, however, searching for invariants over a fixed set of predicates has proven to be
extremely effective. Prominent examples include Microsoft’s Static Driver Verifier [39,47]
(specifically the underlying tool CORRAL [40] is an industry-strength tool that leverages
exactly this approach) as well as GPU Verify [4], a fully-automated too to verify race free-
dom of GPU kernels. Note that for both examples, the predicates are generated automatically
based on the code of the programs and/or the specification to verify—similar to what we did
in Sect. 3.

In case the current set of predicates is insufficient to prove the program correct, a simple
recourse is to negate predicates (that did not already occur negated) or add more complex
predicates (e.g., as we do in Sect. 3). Although this increases the complexity of the verification
task (as it enlarges the search space), the specific learning algorithm we use (i.e., HOUDINI)
only requires a linear number of rounds in the number of predicates to find an invariant (or
report that there is no conjunctive invariant that the verification engine can use to prove the
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program correct). In fact, the increased number of rounds was never a limiting factor in our
experiments (see Sect.3 and “Appendix A)”. Note that the succinctness of a certain class of
formulas is also less of a concern compared to the size of the hypothesis space (since the
number of rounds depends on the latter).

Finally, note that our framework is designed to prove the correctness of programs, but not
do find bugs. As such, it does not necessarily terminate if the input program is not correct
with respect to its specification. In our experience, however, the ICE framework can often
detect specification violations, which manifest as inconsistent ICE samples (i.e., samples
with internal inconsistencies such as an implication leading from a positive example to a
negative example).

3 Application: Learning Invariants that Aid Natural Proofs for Heap
Reasoning

We now develop an instantiation of our learning framework for verification engines based
on natural proofs for heap reasoning [53,55].

Background: Natural Proofs and DRYAD

DRYAD [53,55] is a dialect of separation logic that allows expressing second order properties
using recursive functions and predicates. DRYAD has a few restrictions, such as disallowing
negations inside recursive definitions and in sub-formulas connected by spatial conjunctions
(see Pek, Qiu, and Madhusudan [53]). However, it is expressive enough to define a variety
of data-structures (singly and doubly linked lists, sorted lists, binary search trees, AVL trees,
maxheaps, treaps) and recursive definitions over them that map to numbers (length, height,
etc.). DRYAD also allows expressing properties about the data stored within the heap (the
multiset of keys stored in lists, trees, etc.).

Natural proofs [53,55] is a sound but incomplete strategy for deciding satisfiability of
DRYAD formulas. The first step the natural proof verifier performs is to convert all predicates
and functions in a DRYAD-annotated program to classical logic. This translation introduces
heaplets (modeled as sets of locations) explicitly in the logic. Furthermore, it introduces
assertions demanding that the access of each method is contained to the heaplet implicitly
defined by its pre-condition (taking into account newly allocated or freed nodes) and the
modified heaplet at the end of the program precisely matches the heaplet implicitly defined
by the post-condition.

In the second step, the natural proof verifier applies the following three transformations to
the program: (a) it abstracts all recursive definitions on the heap using uninterpreted functions
and introduces finite-depth unfoldings of these definitions at every place in the code where
locations are dereferenced, (b) it models heaplets and other sets using the decidable theory
of maps, and (c) it inserts frame reasoning explicitly in the code, which allows the verifier
to derive that certain properties continue to hold across a heap update (or function call)
using the heaplet that is being modified. Subsequently, the natural proof verifier translates
the transformed program to BOOGIE [3], an intermediate verification language that handles
proof obligations using automatic theorem provers (typically SMT solvers).

To perform both steps automatically, we used the tool VCDRYAD [53], which extends
VCC [13] and operates on heap-manipulating C programs. The result is a BOOGIE pro-
gram with no recursive definitions, where all verification conditions are in decidable logics,
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and where a standard SMT solver, such as Z3 [18], can return models when formulas are
satisfiable. The program in question can then be verified if supplied with correct induc-
tive loop-invariants and adequate pre/post-conditions. We refer the reader to the work on
DRYAD [55] and VCDRYAD [53] for more details.

Learning Heap Invariants

We have implemented a prototype” that consists of the entire VCDRYAD pipeline, which
takes C programs annotated in DRYAD and converts them to BOOGIE programs via the nat-
ural proof transformations described above. We then apply our transformation to the ICE
learning framework and pair BOOGIE with the ICE learning algorithm HOUDINI [23] that
learns conjunctive invariants over a finite set of predicates (we describe shortly how these
predicates are generated). After these transformations, BOOGIE satisfies the requirements on
verification engines of our framework.

Given the DRYAD definitions of data structures, we automatically generated a set &
of predicates, which serve as the basic building blocks of our invariants. Following other
successful work on template-based verification, such as GPU Verify [4], we constructed the
predicates from generic templates, which we obtained by inspecting a small number of
programs. These templates were then instantiated using all combinations of program variables
that occur in the program being verified. Figure 3 presents these templates in detail.

Our templates cover a fairly exhaustive set of predicates. This includes properties of the
store (equality of pointer variables, equality and inequalities between integer variables, etc.),
shape properties (singly and doubly linked lists and list segments, sorted lists, trees, binary
search trees, AVL trees, treaps, etc.), and recursive definitions that map data structures to
numbers, involving arithmetic relationships and set relationships (keys/data stored in a struc-
ture, lengths of lists and list segments, height of trees). In addition, our templates include
predicates describing heaplets of various structures, which involve set operations, disjoint-
ness, and equalities. The structures and predicates are extensible, of course, to any recursive
definition expressible in DRYAD.

The templates are grouped into three categories, roughly in increasing complexity. Pred-
icates of Category 1 involve shape-related properties, predicates of Category 2 involve
properties related to the keys stored in the data-structure, and predicates of Category 3 involve
size-related properties (lengths of lists and heights of trees). Given a program to verify and
its annotations, we choose the category of templates depending on whether the specification
refers to shape only, shapes and keys, or shapes, keys, and sizes (choosing a category includes
the predicates of lower category as well). Then, predicates are automatically generated by
instantiating the templates with all (combinations of) program variables. This approach gives
us a fairly fine-grained control over the set of predicates used in the verification process.

Benchmarks

We have evaluated our prototype on ten benchmark suites that contain standard algorithms
on dynamic data structures, such as searching, inserting, or deleting items in lists and trees.
These benchmarks were taken from the following sources:

1. GNU C Library(glibc) singly/sorted linked lists;

4 This prototype as well as the prototype of Sect.4 for learning universally quantified invariants is publicly
available as one artifact on figshare [49]. This artifact also contains our benchmarks and all scripts required
to replicate the results in this paper.
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X,y € PointerVars  X,y,z € PointerVars*  pf € PointerFields  df € DataFields
i,] € IntegerVars U {0,IntMax, IntMin}

listshape(x) == LinkedList(x;) | DoublyLinkedList(x;) | SortedLinkedList(x;)
| LinkedListSeg(xi,x2) | DoublyLinkedListSeg(x;,x2)

treeshape(x) := BST(x) | AVLiree(x) | Treap(x)
shape(x) = listshape(x) | treeshape(x)

size(x) := listshape_length(x) | treeshape_height(x)

Category 1
x=nil x=y
X ?é nil X 76 y
shape(x) x.pf = nil
X € shape_heaplet(y) x.pf # nil
X ¢ shape_heaplet(y) xpf=y
shape_heaplet(x) N shape_heaplet(y) =0 xpf#y
Category 2
i € shape_key_set(X) xdf =i
i ¢ shape_key_set(x) xdf #i
shape_key_set(x) <eet {i} xdf <i
shape_key_set(X) >eet {i} xdf >i
shape_key_set(X) <set {y.df } x.df =ydf
shape_key_set(X) >set {y.df } x.df #y.df
shape_key_set(x) = shape_key_set(y) xdf <ydf
shape_key_set(x) <qet shape_key_set(y) xdf > y.df
shape_key_set(X) >qet shape_key_set(y)

(x)

shape_key_set(x) = shape_key_set(y) U shape_key_set(z)

Category 3

size(X) =i—j size(x) =i
size(x) —size(y) =i size(x) <i
size(x) — size(y) =i—j size(x) > i

Fig. 3 Templates of DRYAD predicates. The operator <set denotes comparison between integer sets, where
A <set Bif and only if x < y holds for all x € A and y € B. The operator >set is similarly defined. Shape
properties such as LinkedList, AVLtree, and so on are recursively defined in DRYAD (not shown here) and are
extensible to any class of DRYAD-definable shapes. Similarly, the definitions related to keys stored in a data
structure and the sizes of data structures also stem from recursive definitions in DRYAD

GNU C Library(glibc) doubly linked lists;

OpenBSD SysQueue;

GRASSHOPPER [54] singly linked lists;

GRASSHOPPER [54] doubly linked lists;

GRASSHOPPER [54] sorted linked lists;

VCDRYAD [53] sorted linked lists;

VCDRYAD [53] binary search trees, AVL trees, and treaps;
AFWP [33] singly/sorted linked lists; and

ExpressOS [45] MemoryRegion.

XNk WD

—_
e
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The specifications for these programs are generally checks for their full functional correctness,
such as preserving or altering shapes of data structures, inserting or deleting keys, filtering
or finding elements, as well as sortedness of elements. The specifications, hence, involve
separation logic with arithmetic as well as recursive definitions that compute numbers (such
as lengths and heights), data-aggregating recursive functions (such as multisets of keys stored
in the data structures), and complex combinations of these properties (e.g., to specify binary
search trees, AVL trees, and treaps). All programs are annotated in DRYAD, and checking
validity of the resulting verification conditions is undecidable.

From these benchmark suites, we first picked all programs that contained iterative loops
and erased the user-provided loop invariants. We also selected some programs that were purely
recursive and where the contract for the function had manually been strengthened to make the
verification succeed. We weakened these contracts to only state the specification (typically
by removing formulas in the post-conditions of recursively called functions) and introduced
annotation holes instead. The goal was to synthesize strengthenings of these contracts that
allow proving the program correct (we left out programs where weakening was unnatural). We
also chose five straight-line programs, deleted their post-conditions, and evaluated whether
our prototype was able to learn post-conditions for them (since our conjunctive learner learns
the strongest invariant expressible as a conjunct, we can use our framework to synthesize
post-conditions as well). Since our framework requires a verification engine that terminates
when given incorrect invariants, we had to modify some axiomatizations for sets (to handle
heaplets). We were unable to make a small number of programs work with these simpler
axioms and had to exclude them. In total, we obtained 83 routines.’

After removing annotations from the benchmarks, we automatically inserted appropriate
predicates over which to build invariants and contracts as described above. For all benchmark
suites, conjunctions of these predicates were sufficient to prove the programs correct.

Experimental Results

We performed all experiments sequentially on a single core of an Intel Core i5-6600 3.3 GHz
CPU with 16 GB of RAM running Debian GNU/Linux 9.12 (stretch). For each benchmark,
we limited the memory available to the underlying SMT solver (Z3 [18] in our case) to 1 GB.
This amount was sufficient for all benchmarks.

The box plots in Fig.4 summarize the results of this empirical evaluation aggregated by
benchmark suite (full details can be found in “Appendix A”). This includes the time required
to verify the programs, the number of automatically inserted base predicates (i.e., | Z?|), and
the number of iterations in the learning process. Each box in the diagrams shows the lower
and upper quartile (left and right border of the box, respectively), the median (line within the
box), as well as the minimum and maximum (left and right whisker, respectively).

Our prototype was successful in learning invariants and contracts for all 83 programs. The
fact that the median time for a great majority of benchmark suites is less than 10 s shows that
our technique is extremely effective in finding inductive DRYAD invariants. Despite many
examples starting with hundreds of base predicates, which suggests a worst-case complexity
of hundreds of iterations, the learner was able to learn with much fewer iterations. Moreover,

5 Please note that we did not consider benchmarks from the Software Verification Competition [5] because
these programs tend to have simple assertions (e.g., no null-pointer dereference) or pointer arithmetic asser-
tions, which typically can be proven correct using decidable reasoning. Our framework, however, targets
expressive specifications written in separation logic, where verification conditions do not fall in a decidable
theory.
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Benchmark suite 1 2 3 4 5 6 7 8 9 10

Number of programs 16 9 3 8§ 8§ 11 3 11 9
Max. category of templates 33 1 1 1 2 2 3 2 1

Time in s Iterations
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Fig.4 Aggregated experimental results of the DRYAD benchmarks

the number of predicates in the final invariant is small. This shows that non-provability
information of our framework provide much more information than the worst-case suggests.
To the best of our knowledge, our prototype is currently the only tool able of fully auto-
matically verifying these challenging benchmark suites. We must emphasize, however, that
there are subsets of these benchmarks that can be verified by reformulating the verification
problem in decidable fragments of separation logic—we refer the reader to the related work in
Sect. 1 for a survey of such work. Our goal in this evaluation, however, is not to compete with
other, mature tools on a subset of benchmarks, but to measure the efficacy of our proposed
CD-NPI-based invariant synthesis framework on the complete benchmark set.
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4 Application: Learning Invariants in the Presence of Bounded
Quantifier Instantiation

Software verification must deal with quantification in numerous application domains. For
instance, quantifiers are often needed for axiomatizing theories that are not already equipped
with decision procedures, for specifying properties of unbounded data structures and dynami-
cally allocated memory, as well as for defining recursive properties of programs. For instance,
the power of two function can be axiomatized using quantifiers:

pow,(0) =1 A VneN:n>0= pow,(n) =2 pow,y(n —1).

Despite the fact that various important first-order theories are undecidable (e.g., the first-
order theory of arithmetic with uninterpreted functions), modern SMT solvers implement
a host of heuristics to cope with quantifier reasoning. Quantifier instantiation, including
pattern-based quantifier instantiation (e.g., E-matching [16]) and model-based quantifier
instantiation [28], are particularly effective heuristics in this context. The key idea of
instantiation-based heuristics is to instantiate universally quantified formulas with a finite
number of ground terms and then check for validity of the resulting quantifier-free formu-
las (whose theory needs to be decidable). The exact instantiation of ground terms varies
from method to method, but most instantiation-based heuristics are necessarily incomplete
in general due to the undecidability of the underlying decision problems.

We can apply invariant synthesis framework for verification engines that employ quanti-
fier instantiation in the following way. Assume that %/ is an undecidable first-order theory
allowing uninterpreted functions and that Z is its decidable quantifier-free fragment. Then,
quantifier instantiation can be seen as a transformation of a %/-formula ¢ (potentially con-
taining quantifiers) into a Z-formula approx(¢) in which all existential quantifiers have been
eliminated (e.g., using skolemization) and all universal quantifiers have been replaced by
finite conjunctions over ground terms. 6 This means that if the Z-formula approx(¢) is valid,
then the % -formula g is valid as well. On the other hand, if approx(¢) is not valid, one cannot
deduce any information about the validity of ¢. However, a Z-model of approx(¢) can be
used to derive non-provability information as described in Sect.2.1.

Benchmarks

Our benchmark suite consists of twelve slightly simplified programs from IronFleet [31]
(provably correct distributed systems), the Verified Software Competition [37], Expres-
sOS [45] (a secure operating system for mobile devices), and tools for sparse matrix
multiplication [8]. In these programs, quantifiers are used to specify recursively defined
predicates, such as power(n, m) and sum(n), as well various array properties, such as no
duplicate elements, periodic properties of array elements, and bijective (injective and sur-
jective) maps. All these specifications are undecidable in general. In particular, the array
specifications fall outside of the decidable array property fragment [7] because they involve
strict comparison between universally quantified index variables, array accesses in the index
guard, nested array accesses (e.g., aj[az[i]]), arithmetic expressions over universally quan-
tified index variables, and alternation of universal and existential quantifiers.

From this benchmark suite, we erased the user-defined loop invariants and generated a
set of predicates that serve as the building blocks of our invariants. To this end, we used the

6 Quantifier instantiation is usually performed iteratively, but we here abstract away from this fact.
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Table 1 Experimental results of the quantifier instantiation benchmarks. The column || refer to the number
of automatically inserted base predicates, the column # Iterations to the number of iterations of the teacher
and learner, and the column |/nv| to the number of predicates in the inferred invariant

Program | 2| # Iterations |Inv| Time in s
inverse 414 126 73 8.05
power2 109 55 34 1.97
powerN 160 60 31 12.11
recordArraySplit 1264 49 51 52.99
recordArrayUnzip 222 17 25 0.73
removeDuplicates 280 67 86 4.00
setFind 492 74 136 243
setInsert 556 73 188 5.96
sparseMatrixGen 816 278 90 20.22
sparseMatrixMul 768 313 91 13.29
sum 128 40 22 0.90
sumMax 192 61 45 3.74

pre/post-conditions of the program being verified as templates from which the actual predi-
cates were generated—as in the case of DRYAD benchmarks, the templates were instantiated
using all combinations of program variables that occur in the program. Additionally, we gen-
erated predicates for octagonal constraints over the integer variables in the programs (i.e.,
relations between two integer variables of the form £x + y < ¢). For programs involving
arrays, we also generated octagonal constraints over array access expressions that appear in
the program.

Experimental Results

We have implemented a prototype’ based on BOOGIE [3] and Z3 [18] as the verification
engine and HOUDINI [23] as a conjunctive ICE learning algorithm. As in the case of the
DRYAD benchmarks, all experiments were conducted sequentially on a single core of an Intel
Core 15-6600 3.3 GHz CPU with 16 GB of RAM running Debian GNU/Linux 9.12 (stretch).
Again, we limited the memory available to the underlying SMT solver to 1 GB. The results
of these experiments are listed in Table 1.

As can be seen from this table, our prototype was effective in finding inductive invariants
and was able to prove each program correct in less than 1 min (in 75 % of the programs
in less than 10 s). Despite having hundreds of base predicates in many examples, which in
turn suggests a worst-case complexity of hundreds of rounds, the learner was able to learn
an inductive invariant with much fewer rounds. As in the case of the DRYAD benchmarks,
the non-provability information provided by the verification engine provided much more
information than the worst-case suggests.

7 As mentioned before, this prototype, the prototype of Sect.3 for learning heap invariants, all benchmarks,
and all scripts to replicate the results in this paper are publicly available as one artifact on figshare [49].

@ Springer



A Learning-Based Approach to Synthesizing Invariants for Incomplete Verification Engines 1545

5 Conclusions and Future Work

We have presented a learning-based framework for invariant synthesis in the presence of
sound but incomplete verification engines. To prove that our technique is effective in prac-
tice, we have successfully applied it two important and challenging verification setting:
verifying heap-manipulating programs against specifications expressed in an expressive and
undecidable dialect of separation logic and verifying programs against specifications with
universal quantification. In particular for the former setting, we are not aware of any other
technique that can handle our extremely challenging benchmark suite.

Several future research directions are interesting. First, the framework we have developed
is based on the principle of counterexample-guided inductive synthesis, where the invariant
synthesizer synthesizes invariants using non-provability information but does not directly
work on the program’s structure. It would be interesting to extend white-box invariant gen-
eration techniques such as interpolation/IC3/PDR, working using & (or ) abstractions of
the program directly in order to synthesize invariants for them. Second, in the CD-NPI learn-
ing framework we have put forth, it would be interesting to change the underlying logic of
communication £ to a richer logic, say the theory of arithmetic and uninterpreted functions.
The challenge here would be to extract non-provability information from the models to the
richer theory, and pairing them with synthesis engines that synthesize expressions against
constraints in . Finally, we think invariant learning should also include experience gained in
verifying other programs in the past, both manually and automatically. A learning algorithm
that combines logic-based synthesis with experience and priors gained from repositories of
verified programs can be more effective.
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Table 2 Experimental results of the heap invariants benchmarks. The column |£?| refer to the number of
candidate predicates, the column Cat. corresponds to the category of predicates used, the column # Iterations
to the number of iterations of the teacher and learner, and the column |Inv| to the number of predicates in the
inferred invariant

Program | 2| Cat. # Iterations [Tnv| Time in s

(1) GNU C Library(glibc) singly and sorted linked-list

g_slist_copy 368 2 123 101 50.93
g_slist_find 48 2 18 9 0.68
g_slist_free 22 1 15 1 1.04
g_slist_index 237 3 68 57 5.55
g_slist_insert 464 2 160 50 211.87
g_slist_insert_before 795 2 279 114 499.70
g_slist_insert_sorted 520 2 193 135 200.85
g_slist_last 32 2 19 8 0.61
g_slist_length 54 3 20 12 0.83
g_slist_nth 88 3 26 17 0.97
g_slist_nth_data 342 3 99 62 7.89
g_slist_position 162 3 32 18 2.44
g_slist_remove 140 1 73 28 4.13
g_slist_remove_all 380 2 132 15 52.17
g_slist_remove_link 325 1 85 57 13.16
g_slist_reverse 117 2 58 6 4.13
(2) GNU C Library(glibc) doubly linked-list
g_list_find 48 2 18 9 0.66
g_list_free 22 1 15 1 0.75
g_list_index 237 3 68 57 5.33
g_list_last 22 1 15 6 0.26
g_list_length 88 3 24 16 0.95
g_list_nth 88 3 26 17 0.95
g_list_nth_data 342 3 99 62 8.34
g_list_position 162 3 32 18 2.56
g_list_reverse 320 2 84 2 18.25
(3) OpenBSD SysQueue
squeue_insert_head™ 1 2 9.86
squeue_insert_tail* 5 1 3 14.51
squeue_remove_head* 18 1 7 5 9.27
(4) GRASShopper [54] singly linked-list
sl_concat 63 1 26 15 0.77
sl_copy 63 1 32 12 2.35
sl_dispose 22 1 14 1 0.61
sl_filter 140 1 63 9 5.27
sl_insert 63 1 31 19 1.14
sl_remove 22 1 15 6 0.50
sl_reverse 63 1 36 4 1.63
sl_traverse 22 1 15 4 0.21
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Table 2 continued

Program | 2| Cat. # Iterations [Inv| Time in s

(5) GRASShopper [54] doubly linked-list

dl_concat 63 1 26 15 0.60
dl_copy 63 1 32 12 2.83
dl_dispose 140 1 44 4 6.13
dl_filter 140 1 63 9 3.99
dl_insert 63 1 31 19 0.77
dl_remove 22 1 15 6 0.37
dl_reverse 63 1 36 4 1.46
dl_traverse 22 1 14 4 0.16
(6) GRASShopper [54] sorted linked-list
sls_concat 153 2 38 27 10.03
sls_copy 496 2 144 94 1401.32
sls_dispose 40 2 16 3 1.34
sls_double_all 496 2 106 102 118.54
sls_filter 496 2 127 30 138.84
sls_insert 153 2 53 29 16.32
sls_merge 416 2 63 29 298.66
sls_remove 496 2 165 119 66.92
sls_reverse 102 2 28 13 19.62
sls_split 153 2 53 29 92.12
sls_traverse 40 2 18 9 0.80
(7) VCDryad [53] sorted linked-list
find_last_sorted 40 2 19 11 0.94
reverse_sorted 102 2 28 13 6.96
sorted_insert_iter 201 2 59 48 92.26
(8) VCDryad [53] trees
avl-delete-rec’ 72 3 16 5 376.06
avl-find-smallest’ 19 3 5 11 0.16
avl-insert-rec’ 72 3 23 14 90.70
bst-delete-rec’ 68 2 16 11 159.03
bst-find-rec 23 2 6 9 0.47
bst-insert-rec’ 68 2 28 16 55.25
traverse-inorder’ 3 3 0.15
traverse—posttordeﬂL 3 3 0.15
traverse—preorder% 3 3 0.15
treap—delete—rec% 80 3 17 13 472.12
treap-ﬁnd-lrecJr 25 3 6 11 0.58
(9) AFWP [33] singly and sorted linked-list
SLL-create 5 1 5 1 0.09
SLL-delete-all 22 1 14 1 4.39
SLL-delete 265 1 106 47 8.35
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Table 2 continued

Program | 2| Cat. # Iterations [Inv| Time in s
SLL-filter 63 1 34 9 1.87
SLL-find 140 1 53 45 2.57
SLL-insert 201 2 65 26 44.00
SLL-last 63 1 34 9 1.06
SLL-merge 416 2 71 46 302.69
SLL-reverse 63 1 36 4 1.49

(10) ExpressOS [45] MemoryRegion
memory_region_create 7 1 3 7 0.04
memory_region_find 24 1 16 2 0.15
memory_region_init* 7 1 5 4 0.08
memory_region_insert 51 1 16 3 0.32
split_memory_region™ 24 1 9 6 5.06

A TIndicates contract strengthening, while a * indicates post condition learning
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