
NetGen: Synthesizing Data-plane Configurations for
Network Policies

Shambwaditya Saha Santhosh Prabhu P. Madhusudan
University of Illinois at Urbana-Champaign, USA.
{ssaha6,prabhum2,madhu}@illinois.edu

ABSTRACT
Networks are hard to maintain. When the physical network
changes or when policies, most importantly security prop-
erties change, it is hard to change the network while main-
taining all other existing policies. We study the problem
of network change synthesis, where given a current network
and a desired change for it expressed as a high-level pol-
icy, we automate the process of synthesizing changes in the
data-plane configuration so that the policy is met. We de-
velop a new language that allows the user to express desired
reroutings and, given such a policy and a current network,
we design a novel synthesis engine based on abstraction and
constraint-solving that can find (minimal) changes to the
current network that satisfies the policy. We report on a pre-
liminary implementation of our technique that shows that
we can effectively and efficiently synthesize changes in large
networks.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management ; D.3.2 [Programming
Languages]: Language Classifications—Specialized applica-
tion languages

Keywords
Software defined network; data-plane syntheis; network man-
agement; programming languages; constraint-solving

1. INTRODUCTION
Computer networks require constant management, thanks

to the critical nature of the traffic they carry, constant oc-
currence of failures, and never-ending changes to networking
policies. Making changes to a network, though unavoidable,
is a complicated task for network operators, due to the pos-
sibility of unforeseen ways in which updates may interact,
potentially causing connectivity problems, or violation of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SOSR2015, June 17 - 18, 2015, Santa Clara, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3451-8/15/06 ...$15.00
DOI: http://dx.doi.org/10.1145/2774993.2775006.

policies. The problem is exacerbated by the distributed na-
ture of networks, which makes it difficult to make the cor-
rect changes, and when there are problems, to detect and
debug them. Often, network operators make changes that
appear to be right, only to discover later that they were
not. Worse still, faulty configurations sometimes go unno-
ticed until they get exploited, which results in huge losses
to the organizations involved, both in terms of money and
in terms of credibility [1, 10].

Though Software Defined Networks allow network admin-
istrators to program the network in a more intuitive manner,
it still takes considerable effort in deciding how to enforce a
desired policy. There have been attempts [6, 11] to simplify
this process, by providing higher level abstractions that are
useful in specifying what the administrator wishes to enforce
in the network.

In this paper, we propose NetGen, a platform that com-
bines the power of formal methods and synthesis techniques
with the convenience of SDNs to enable automatic updates
to network configurations, with respect to desired adminis-
trative requirements. NetGen provides a specification for-
mat that identifies packets and paths that need modifica-
tion, where paths and modifications are given using regular
expressions (inspired by existing work [15, 8]). NetGen uses
packet abstractions, creates models of the current network
for each packet class, and uses a logical constraint solver
to come up with a new dataplane configuration that satis-
fies the specified requirement, while leaving its behavior on
other packets unchanged.

For instance, consider the network fragment illustrated in
Figure 1. F1 and F2 are firewalls, and switches A, B and C
are configured to forward all HTTP traffic to F1. We may
wish to now have F2 (and not F1) handle HTTP traffic that
originates from the IP address x.y.z.w, for load balancing or
other reasons. However, we may have other constraints to
satisfy, such as:

1. in the new dataplane state, packets are still delivered
to their original destinations

2. the rules at F1 and F2 should not be changed.

We can state this requirement using the following NetGen
specification, and then synthesize the new network using the
technique and tool provided in this paper:

match(TP_SRC_PORT=80) & match(IP_SRC=x.y.z.w),{A,B,C}:

.* F1 .* => (N-F1)* F2 (N-F1)* od NM:{F1,F2}

The first line identifies a set of packets and a set of sources
({A,B,C}) and is followed by a path descriptor(.* F1 .*):
these identify the packets from the sources following certain

Figure 1: A fragment of a network

paths in the network that need to be rerouted. The path
descriptor following ⇒ specifies the new route they should
take (they shouldn’t go through F1 but must go through
F2 and reach their original destination od). Finally, the
set NM gives the nodes whose next-hop relation cannot be
changed. Semantics of specifications are explained further
in Section 2.

Given this specification, and the current state of the net-
work, NetGen can automatically determine what the new
dataplane state should be (using a minimal number of changes
to the current network), so that the identified traffic now
passes through F2.

Though there have been previous attempts to synthesize
network configurations for specific requirements [15, 12], to
the best of our knowledge no work has yet studied the prob-
lem of synthesizing new configurations by making changes to
an existing one. This makes NetGen unique in this growing
space of synthesis tools for networks [15, 12, 17]. In gen-
eral, synthesis tools face the problem of underspecification,
wherein the operator would find it difficult to lay down the
complete specification of the entire network precisely in or-
der to create an acceptable network. However, we believe
that synthesizing only delta-changes to the current network
by specifying the change that is desired is more practical, al-
lowing the operator to keep the rest of the design intact. We
also note that using NetGen doesn’t preclude any manual
changes that the operator may wish to the make to the net-
work, like installing static routes or updating firewall rules.

The key contributions of this paper are:

1. A language based for expressing the desired changes in
an existing network.

2. A scalable synthesis engine for finding network changes
based on abstractions and constraint-solvers that gen-
erates new dataplane states, that are different from the
current network only in terms of the specified change,
and that is guaranteed to be correct.

2. THE SPECIFICATION LANGUAGE
The language for specifying updates in NetGen is based

on regular expressions, similar to notations used in existing
work [8, 15]. Figure 2 illustrates the definition of the lan-
guage. A specification is of the form
ts, S: old_path ⇒ new_path NM:R consists of five major
components.

• A traffic spec ts describing the packets to which the
change is to be applied. We assume that packets are
not modified by the network.

spec ::= traffic, S: path => path[od] [NM:R]

traffic ts ::= true | match(header=val) |

match(header,prefix) | (ts & ts) | (ts | ts)

| (not ts)

path p ::= n | . | p + p | p p | p*

where S,R ⊆ N and n ∈ N .

Figure 2: Specification Language.

• A source-set S specifying the devices starting from
where route changes need to be made.
• A current-path spec old_path defining the paths that

need to be altered.
• A target-path spec new_path specifying the new paths

that packets satisfying ts starting from S that take
paths old_path must take in the new network.
• Optionally, a specification of a set of nodes R that

should not be modified (NM) at all, in computing the
new dataplane state.

For instance, consider the following rerouting spec:
All HTTP traffic entering through ingress router R1 should
reach server S1.

This can be specified in the language as follows:

match(TP_SRC_PORT=80), {R1}: .* => .* S1

The above specification is quite intuitive. The traffic spec
(match(TP_SRC_PORT=80)) specifies our intention of chang-
ing the behavior of HTTP traffic. {R1} informs NetGen
that only paths starting from router R1 need to change. .*

enforces that all existing paths are of interest, and .* S1

specifies the nature of the final paths to be synthesized.
Since no nodes are specified as non-mutable, NetGen as-
sumes that the forwarding table of any forwarding element
may be changed.

To make the language more flexible and useful, we allow
for the use of a special symbol od, which stands for original
destination. To see how the symbol is useful, let us consider
a scenario where for maintenance, we wish to redirect all
traffic passing through a switch, say S1. The specification
for this change can be written as follows:

true, U: .* => (N-S1)* od

Here, U denotes the set of all ingress points into the network
and N denotes all nodes. The use of od ensures that the
traffic is delivered in the new network to the destination to
which it is being delivered in the current network. A list of
example requirements and their specifications are mentioned
in Table 1.

3. THE SYNTHESIS ALGORITHM
A network topology is a three-tuple Top = (N,→,External),

where N is a finite set of nodes, →⊆ N × N is a binary
relation that gives the connectivity of nodes in the under-
lying network topology, and External ⊆ N identifies the set
of external nodes, which are nodes representing the world,
and which we have no control over. We assume there are
no outgoing edges from external nodes; further, let us as-
sume a special external node drop, which is connected to all
non-external nodes and has no outgoing edges, and where
forwarding to this node models the dropping of a packet.

Let us fix a finite set of packet (headers) P; this set essen-
tially constitutes all valid packet headers.

Requirement Specification

Traffic to IP x.y.z.w entering at A is dropped match(IP_DST=x.y.z.w), {A}: .* => .* Drop

Traffic to IP x.y.z.w entering through nodes in S passes
through a traffic monitor

match(IP_DST=x.y.z.w), S: .* => .* Monitor .* od

No traffic entering through nodes in S goes through S1 true, S: .* S1 .* => (N-S1)* od

HTTP traffic entering through A, B and C should go
through F2 instead of F1

match(TP_SRC_PORT=80), {A,B,C}:

.* F1 .* => (N-F1)* F2 (N-F1)* od NM:{F1,F2}

All traffic passing the traffic monitor and then the firewall
should traverse firewall first and then the traffic monitor

true, U: .* FW .* Monitor .* => .* Monitor .* FW

.* od NM:{FW}

Table 1: Example rerouting specifications.

A network over a network topology Top and packets P is a
structure N = (N,Rules), where Rules : N×Packets −→ N ,
a mapping that maps pairs of nodes and packets to the next-
hop node (dropped packets are sent to the node drop). Rules
are usually compactly encoded using predicates on header
attributes of packets, and are installed at individual nodes
in look-up tables.

A network synthesis problem over the topology Top and
the set of packets P is specified by a pair (N , α), where N
is the current network and α is the desired specification of
the new network we want to synthesize by making a small
number of changes to the current network. Let us fix a
specification α = “ts, S : old path ⇒ new path NM :R” for
the rest of the paper.

Our synthesis algorithm proceeds in several phases:

Phase I: Abstract the network using packet equivalence
classes; construct the abstract network restricted to
the packet classes mentioned in the spec ts.

Phase II: Convert specifications old path and new path to
automata Aold and Anew, identifying and replacing od
labels.

Phase III: Identify further immutable nodes in the net-
work from the abstract network and the traffic speci-
fication oldpath.

Phase IV: Reduce synthesis to a constraint satisfaction prob-
lem, and solve it using SMT solvers.

Phase V: Extract the network update from the satisfying
model.

In Phase 1, we will identify packet-classes and abstract the
network according to these. Phases II-V can in fact be per-
formed independently for each packet-class, as the synthesis
for one packet-class is completely independent of another.
This makes our solution highly parallelizable. Notice how-
ever that synthesis cannot be separately done for each source
node mentioned in S. To see why, consider a scenario where
there are two sources s1 and s2 in S, and the routes of a
packet p starting at these nodes eventually merge at a node n
before proceeding to their destination in the network. Now,
assume that we want to reroute these packets to a firewall
F , but this firewall is accessible in the topology only after
they cross the node n. In this case, the rerouting specialized
to either source is not realizable since it demands that the
path taken by the packet from the other source takes the
same path.

We now give details of the various phases.

I. Network Abstraction using Packet Equivalence
Though there are a large number of packets, they can be par-
titioned into equivalence classes, where two packets in the

same equivalence class are forwarded by every node in pre-
cisely the same way. The idea of using equivalence classes of
packets is not new (for instance, Veriflow [4] uses equivalence
classes of packets to verify correctness of flows in networks).

Let us fix an equivalence relation over packets that sat-
isfies the following condition (which we will ensure during
construction of equivalence classes):
(∗) For any packet-class pc, any two packets p, p′ in pc,

• every node in the network forwards both packets to
the same node as the next-hop, or drops both of them,
and
• either both p, p′ satisfy the traffic description ts given

in the specification or neither do.

We can then abstract the network into one that forwards
packet-classes, instead of packets. The resulting abstract
networks is: AN = (N,ARules), where the abstract rules
ARules : N×PacketClasses→ N is given by ARules(n, pc) =
n′ if there exists (equivalently, for every) packet p ∈ pc,
Rules(n, p) = n′, for every packet-class pc and every n ∈ N .

Notice that the traffic description ts in the specification is
the union of a finite set of packet-classes, which we shall re-
fer to as the relevant packet classes, and denote them as the
set SpecPC. We now restrict the abstract network to only
contain forwarding edges for these relevant packet-classes in
SpecPC. We will henceforth work only with this reduced
abstract network, reformulating the synthesis problem as a
synthesis problem on this abstract network. Note that this
is not a limitation in any way–since the packet equivalence
classes are indistinguishable by all nodes in the current net-
work and by the specification, we can always work with this
level of granularity. In fact, the coarser this granularity is,
the better the synthesized solution would be, as it would
make minimal changes to the original network.

For each packet-class pc ∈ SpecPC, we can construct the
abstract network for each packet-class pc ∈ SpecPC and
apply the next phases of synthesis to each such network
independently. We will assume that the current network
doesn’t have a cycle on any packet; hence this network will
be acyclic. We identify the sources (nodes with no incom-
ing edges) and sinks (nodes with no outgoing edges) in each
such graph.

II: Specification routing to Automata
We convert both old path into finite automaton Aold over
the alphabet N and new path into a finite automaton Anew

over the alphabet N ∪ {od}). Furthermore, for every packet
class pc, we examine the abstract network on it: and, for
any source s ∈ S, we find the original destination that this
packet gets forwarded to in the network. Let us denote this
by od(s, pc); we will use this later in the SMT formulation.

III: Identify further immutable nodes
The specification demands a rerouting of packets from the
sources S mentioned in the specification, but also demands
that for other sources and packets, the network remain the
same. Our synthesis algorithm will only reroute packets
that satisfy the packet description given in the specification.
However, for packets mentioned in the specification and for
sources not in S, we need to ensure that the routing of these
packets in the network are unaffected by our network change.
Furthermore, for a packet mentioned in the specification and
for a source in S, we must leave this routing unaffected if it
is not in the current path specification old path.

We achieve this by taking the path taken by packet classes
mentioned in the specification (ts) from sources not in S, and
mark all these nodes as immutable nodes. More formally, we
identify, for every packet-class pc, a set Imm(pc) which con-
tains these immutable nodes. Also, for every packet class
pc mentioned in the specification (ts) and for every source
s ∈ S, we take the path taken by the packet from this source
in the current abstract network, and check if the path con-
forms to the regular expression old path, by checking accep-
tance by Aold. If the path does not conform, then we add
these nodes to the immutable set for pc.

We also add the immutable set R in the specification
(NM:R) and the external nodes as immutable nodes for ev-
ery packet class. Our SMT constraints will ensure that the
immutability of these nodes is respected.

IV: Modeling synthesis using constraints
We now describe the core of our technique, which is to re-
duce the synthesis problem to a constraint-satisfaction prob-
lem over a decidable logical theory, namely the quantifier-
free theory of uninterpreted functions. These constraints
can be solved effectively by the emerging class of SMT (Sat-
isfiability Modulo Theories) solvers [3], which furthermore
can return a model satisfying the constraints, which then
lead us to the synthesized network. Though network, rules,
packets, etc. can be described by variables ranging over a
bounded domain, and hence can be already expressed as a
SAT (Boolean satisfiability) problem, we choose the theory
of uninterpreted functions in order to encode reachability re-
lations in the network using recursive definitions, including
the complex reachability constraints expressed by the regu-
lar expressions in the specification.

Given the abstract network AN = (N,ARules), we model
the nodes as natural numbers in the range {0, 1, . . . , |N |}
(with 0 corresponding to the drop-node), the packet-classes
also as natural numbers {1, . . . , |SpecPC|}, and the abstract
rules as a function R : [1, |N |]× [1, |SpecPC|]→ [0, |N |].

Modeling delta-changes to the data-plane:
We model the fact that we want a small change to the cur-
rent network by setting a budget k ∈ N, and allowing k
next-hop routing changes to the current network; k is in-
cremented if the constraints are unsatisfiable, till we can
construct a network (we can stop when k reaches the total
number of nodes in the network and this would signal an
unrealizable specification). More precisely, we allow for k
changes, where each change involves a single node and how
it forwards a packet-class that flows into it. We model this
using k triples 〈ni, pci, n

′
i〉, i = 1, . . . k, where these reflect

the fact that ni sends any incoming packet in the packet
class pci to n′

i instead of where it is sent in the current
network. The constraints we add hence are, for each packet-

class pc ∈ SpecPC:

∧
i∈[1,k]

 ∧
m∈Imm(pc)

(ni 6= m) ∧
∨

n,n′:n→n′
(ni = n ∧ n′

i = n′)


which constrains the changes to not affect immutable nodes
and to conform to the network topology Top.

Modeling the rerouting spec on the new network:
Finally, we model the fact that the routing in the new net-
work for the relevant packet classes mentioned in ts from
the sources S that satisfy the path specification old path
conform to the new routing specification new path. In order
to express this, we will impose constraints that demand a
witness that every such routing path in the new network be
accepted by Anew. Let us remove the od element from this
automaton by replacing it with an arbitrary node; we will
handle constraints regarding original desitination separately.

We first reverse the language of Anew and determinize this
automaton to get a deterministic automaton Bnew for the
reversal language. Note that for any destination node and
any packet class, the set of all nodes that forward this packet
class to that destination forms a tree, with the destination
as the root. Our aim is to label this tree using states of the
automaton Bnew, so that it gives a uniform witness that all
paths from any source to any destination on any packet class
satisfies the specification.

Let Bnew = (Q, q0, δ, F), where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
δ : Q×N → Q is the transition function. Let us assume that
states are natural numbers in the range [1, |Q|], with q0 = 1.
We introduce an uninterpreted function ρ : N×SpecPC→ Q
and impose the following constraints: for every sink node n
in the network and for each pc, we have the constraint:

ρ(n, pc) = δ(q0, n)

and for every non-sink node n in the network for pc we have:
k∧

i=1

[
(n = ni ∧ pc = pci)⇒ ρ(n, pc) = δ(ρ(n′

i, pc), n)
]

∧
k∧

i=1

[(n 6=ni ∨ pc 6=pci)]⇒ ρ(n, pc) = δ(ρ(R(n, pc), pc), n)

The above constraints essentially “run” the automaton
Bnew on the new network, using the new next-hop relations
given by the tuples 〈ni, pci, n

′
i〉, and falling back on the cur-

rent network (R) if a node’s routing hasn’t been modified.
Also, for each source node s ∈ S in the specification (and

those only) and packet-class pc, to ensure that the path in
the current network from s met the path condition old path,
we impose the following constraint:∨

qj∈F

ρ(s, pc) = qj

The salient aspect of the above formulation is that reacha-
bility constraints in the network are captured using uninter-
preted functions that are recursively defined; this technique
is motivated by similar techniques in verifying programs that
do delta-changes to data-structures in the program verifica-
tion literature [9]. Furthermore, these functions also capture
the witness in terms of state-labeling of the nodes that prove
the specification is satisfied; since automata have only local
constraints between states, they can be captured by writ-
ing down one constraint per node. Consequently, the entire

Figure 3: Update synthesized by NegGen (The orig-
inal configuration is on the left, and the synthesized
one on the right).

encoding is linear in the size of the abstract network (as
opposed to quadratic-sized constraints if we captured reach-
ability in r steps, for each r in the range [1, n], as would be
required in a SAT encoding).

Finally, we need to ensure that there are no cycles in the
new network that is being synthesized (in fact, even the
correctness of the various conditions above depend on this
property). We ensure cycle-freedom by assigning a rank,
which is a natural number to every node, where all sink
nodes get rank 0 and every node gets a rank greater than
the rank of its successor node in the network. We introduce
an uninterpreted function π : N × SpecPC→ N and impose
the following constraints, for each packet-class pc:

π(n, pc) = 0 for any sink node n

and for every non-sink node n:

k∧
i=1

[
(n = ni ∧ pc = pci)⇒ π(n, pc) > π(n′

i, pc)
]

∧
k∧

i=1

[(n 6= ni ∨ pc 6= pci)]⇒ π(n, pc) > π(R(n, pc), pc)

Notice again that the use of uninterpreted functions and
arithmetic helps us capture the above property of acyclicity
succinctly.

Finally, we define another recursive function dest which is
constrained to map each node and packet-class to the final
sink node that it is forwarded to. Its definition is similar
to the above definitions, and we skip it. If the specification
demands that the original destination of packet-classes are
maintained (has the optional od), then we demand that the
destination node for all sources s in the specification is the
original destination od(s, pc).

V: Extracting the updates to the network
We use SMT solvers for solving our constraints, which re-
turns to us a minimal change in the current network state
(in terms of changes of next-hop relation on packet-classes)
that results in a new network state that satisfies the new
policy on the routes given by the specification. This change,
modeled using the variables 〈ni, pci, n

′
i〉, i ∈ [1, k], and these

changes can be readily incorporated. We expect NetGen to
be running as an SDN application, and the updates can be
inserted into the network by the controller. However, while
migrating from the current network to the new network, care
should be taken to do the migration carefully to ensure that
packets that get through during the change are handled cor-

Spec.
Classes
Modified

Changes Time

Drop
Traffic

10 10 1.1 sec

Pass Traffic
through Monitor

10 53 8.6 sec

Do not use
a specified switch

245 1481 253 sec

Table 2: Evaluation.

rectly. This is a problem that has been well studied in recent
research [13, 14, 5].

4. IMPLEMENTATION AND EVALUATION
Implementation: We have implemented the core synthe-
sis formulation that forms the primary component of the
NetGen framework. The first major challenge in deploying
NetGen on real-world SDN is to have an accurate knowl-
edge of the current dataplane state, with equivalence classes
defined that satisfy the conditions listed in Section 3. In
our experiments with real-world AS dataplane states, we
used the equivalence classes defined by the Veriflow data-
plane verifier [4]. By tweaking Veriflow slightly, we can get
an abstraction that computes an equivalence class that sat-
isfies both our requirements (that packets in any class are
indistinguishable by both the nodes in the network as well
as the specification). Note that while doing synthesis online,
we can maintain up-to-date information about the network
state, in terms of this abstraction, by simply ensuring that
every change made to the dataplane is reported to the syn-
thesis engine. Hence, we need not compute the abstraction
from scratch each time we do synthesis.

The synthesis engine itself uses the uninterpreted linear
arithmetic solver in Z3, from Microsoft Research[3]. The
synthesis proceeds by synthesizing minimal changes to the
network (by increasing the budget k till synthesis succeeds)
for each packet-class in the specification independently.

Experiments: All experiments were performed on a sys-
tem with an Intel Core i7 2.2 GHz processor and 4GB main
memory running 64-bit Ubuntu 14.04 OS.

We evaluated the correctness of the synthesis formulation
by synthesizing the update specifications listed in Table 1
over hand-created topologies. Figure 3 illustrates how the
fourth specification from Table 1 was synthesized over an 8
node network. The traffic specification is exactly captured
by the equivalence class of packet pc. It can be seen that
as mandated by the spec, packets in pc starting from nodes
A, B and C now pass through F2 instead of F1, and the
specified packets still reach the original destinations. More-
over, the synthesis engine picks the most reasonable set of
changes to obtain the new dataplane state, due to the min-
imal k constraint.

To test the scalability of our technique, we also synthe-
sized variants of the first three specs over a snapshot of the
Rocketfuel [16] topology AS 1755, consisting of 172 nodes
with 5 million forwarding entries overall, generated through
an OSPF simulation. Table 2 describes the time taken for
synthesis. The numbers suggest that our technique scales
well to networks of larger size.

5. RELATED WORK
Recent years have seen a lot of interest in the use of syn-

thesis techniques for networks. Merlin [15] allowed specifica-
tion of path and bandwidth constraints in a regular expres-
sion based language, and synthesized network configurations
to meet the constraints. FatTire [12] enabled synthesis for
fault tolerance specifications expressed similarly. Alloy [7]
is another tool that falls into the network configuration syn-
thesis category. NetGen is different from these tools in that
the administrator is only required to specify a change to the
existing network configuration, rather than an entirely new
network configuration. Work on automatic firewall fixing by
Chen et al. [2] is similar in spirit to Netgen, but applies only
to firewall policies, with respect to correcting specific kind of
errors. In comparison, NetGen is more flexible, and widely
applicable. NetGen, being a dataplane synthesis tool, is also
different from control plane synthesis tools like NetEgg [17],
which synthesizes SDN programs from example behaviors.

Synthesis (and more generally formal methods) has also
been used in the context of change management, for migrat-
ing from one network configuration to another [13, 18]. Net-
Gen is orthogonal to these techniques. NetGen is targeted
at synthesis of network configurations themselves. Change
management techniques can be then used to migrate the
network to the configurations synthesized by NetGen.

6. FUTURE WORK
The primary future direction we see is a full-fledged im-

plementation of our technique as an SDN application. We
see our tool as being part of a larger suite of formal tools
that make it convenient to manage the network in a prov-
ably correct manner. We would also like to see an extension
of our technique to a larger class of specifications, like QoS
constraints; our general technique of using SMT solvers is
easily extensible as these constraints can be expressed in
decidable SMT logics.

7. ACKNOWLEDGEMENTS
We thank Matthew Caesar, Philip Brighten Godfrey, and

Boon Thau Loo for discussions, and thank Ahmed Khurshid
for providing us with sample networks. This work was par-
tilly supported by NSF Expeditions in Computing ExCAPE
Award #1138994.

8. REFERENCES
[1] Abrams, R. Target Puts Data Breach Costs at $148

Million, and Forecasts Profit Drop.
http://tinyurl.com/l36payc, August 2014.

[2] Chen, F., Liu, A. X., Hwang, J., and Xie, T. First
Step Towards Automatic Correction of Firewall Policy
Faults. ACM Trans. Auton. Adapt. Syst. 7, 2 (July
2012), 27:1–27:24.

[3] De Moura, L., and Bjørner, N. Z3: An Efficient
SMT Solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (2008), pp. 337–340.

[4] Khurshid, A., Zou, X., Zhou, W., Caesar, M.,
and Godfrey, P. B. Veriflow: Verifying
network-wide invariants in real time. In Proceedings of
the 10th USENIX Conference on Networked Systems
Design and Implementation (2013), pp. 15–28.

[5] McClurg, J., Foster, N., and Cerný, P. Efficient
synthesis of network updates. CoRR abs/1403.5843
(2014).

[6] Monsanto, C., Reich, J., Foster, N., Rexford,
J., and Walker, D. Composing Software-defined
Networks. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and
Implementation (2013), pp. 1–14.

[7] Narain, S. Network Configuration Management via
Model Finding. In Proceedings of the 19th Conference
on Large Installation System Administration
Conference - Volume 19 (2005), pp. 15–15.

[8] Narayana, S., Rexford, J., and Walker, D.
Compiling Path Queries in Software-defined Networks.
In Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking (2014), pp. 181–186.

[9] Pek, E., and Madhusudan, P. Explicit and symbolic
techniques for fast and scalable points-to analysis. In
Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State Of the Art in Java Program
analysis, SOAP 2014, Edinburgh, UK, Co-located with
PLDI 2014, June 12, 2014 (2014), pp. 1–6.

[10] Rainone, C. Time warner cable says outage largely
resolved. http://tinyurl.com/m6y4qul, August 2014.

[11] Reich, J., Monsanto, C., Foster, N., Rexford,
J., and Walker, D. Modular SDN Programming
with Pyretic. USENIX ;login 38, 5 (October 2013).

[12] Reitblatt, M., Canini, M., Guha, A., and
Foster, N. FatTire: Declarative Fault Tolerance for
Software-defined Networks. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (2013), pp. 109–114.

[13] Reitblatt, M., Foster, N., Rexford, J.,
Schlesinger, C., and Walker, D. Abstractions for
Network Update. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication (2012), pp. 323–334.

[14] Reitblatt, M., Foster, N., Rexford, J., and
Walker, D. Consistent Updates for Software-defined
Networks: Change You Can Believe in! In Proceedings
of the 10th ACM Workshop on Hot Topics in
Networks (2011), pp. 7:1–7:6.

[15] Soulé, R., Basu, S., Kleinberg, R., Sirer, E. G.,
and Foster, N. Managing the Network with Merlin.
In Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks (2013), pp. 24:1–24:7.

[16] Spring, N., Mahajan, R., Wetherall, D., and
Anderson, T. Measuring isp topologies with
rocketfuel. In In Proc. ACM SIGCOMM (2002),
pp. 133–145.

[17] Yuan, Y., Alur, R., and Loo, B. T. Netegg:
Programming network policies by examples. In
Proceedings of the 13th ACM Workshop on Hot Topics
in Networks (2014), pp. 20:1–20:7.

[18] Zhou, W., Jin, D., Croft, J., Caesar, M., and
Godfrey, P. B. Enforcing customizable consistency
properties in software-defined networks. In 12th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15) (May 2015),
pp. 73–85.

http://tinyurl.com/l36payc
http://tinyurl.com/m6y4qul

	Introduction
	The Specification Language
	The Synthesis Algorithm
	Implementation and Evaluation
	Related Work
	Future Work
	Acknowledgements
	References

