(© 2019 Shambwaditya Saha

LEARNING FRAMEWORKS FOR PROGRAM SYNTHESIS

BY

SHAMBWADITYA SAHA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Madhusudan Parthasarathy, Chair
Professor Mahesh Viswanathan
Professor Tao Xie

Dr. Rishabh Singh, Google Brain

ABSTRACT

The field of synthesis is seeing a renaissance in recent years, where the task is to auto-
matically synthesize small expressions or programs. One of the most prominent techniques
counterexample guided inductive synthesis (CEGIS), uses a teacher(verification oracle) and
a learner(learning algorithm) to learn such expressions across multiple rounds. A learning
framework is a sub-framework of CEGIS where the learner is entirely agnostic of the spec-
ification and learns only from input-output examples provided by the teacher as natural
notions of counterexamples. Thus, learning frameworks for synthesis have three components:
the verification oracle, the notion of a natural counterexample, and the learning algorithm.

The goals of this thesis are to study learning frameworks for synthesis, developing new
and more efficient algorithms for learning, exploring new classes of counterexamples, and
finding applications of synthesis to new domains. Specifically, by co-designing the notion of
counterexamples, the learning algorithms, the verification oracle, and taking into account
the aspects of the application domain, we achieved more effective program synthesis. We
discuss learning frameworks for four different applications, illustrating the co-design of
oracle-counterexample-learner for each of them.

For the first application, we developed a general purpose SyGuS solver for piece-wise
functions, using multiple learners to learn parts of the expression modularly and then
compose them together to get the final expression. Second, we considered the application of
automatic verification, where we synthesized inductive invariants using incomplete verification
oracles. We also propose a novel property driven ICE learning algorithm to learn conjunctive
inductive invariants. We considered specification mining for the next two applications, where
we learned preconditions and postconditions of a method. Instead of using a verification
engine as the oracle, which is not efficient, does not scale, and needs loop invariants, we

bypassed all these limitations by using a test generator as the oracle.

11

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION e s .
1.1 Thesis Work

CHAPTER 2 COMPOSITIONAL SYNTHESIS OF PIECE-WISE FUNCTIONS

BY LEARNING CLASSIFIERS
2.1 Imtroduction
2.2 The Synthesis Problem and Single-Point Refutable Specifications
2.3 A General Synthesis Framework by Learning Classifiers
2.4 Multi-Label Decision Tree Classifiers
2.5 A Synthesis Engine for Linear Integer Arithmetic
2.6 Evaluation
2.7 Related Work
2.8 Conclusions and Future Work

CHAPTER 3 INVARIANT SYNTHESIS FOR INCOMPLETE VERIFICATION

ENGINES . . .
3.1 Introduction

3.2 An Invariant Synthesis Framework for Incomplete Verification Engines

3.3 Learning Invariants that Aid Natural Proofs for Heap Reasoning
3.4 Learning Invariants in the Presence of Bounded Quantifier Instantiation . . .

3.5 Related Work
3.6 Conclusions and Future Work

CHAPTER 4 SORCAR: PROPERTY-DRIVEN ALGORITHMS FOR LEARN-

ING CONJUNCTIVE INVARIANTS
4.1 Introductiono
4.2 Background Lo
4.3 The SORCAR Horn-ICE Learning Algorithm
4.4 Experimental Evaluation L.
4.5 Related Work
4.6 Conclusions and Future Work

CHAPTER 5 LEARNING PRECONDITIONS AND POSTCONDITIONS USING

TEST GENERATORS AS ORACLES
5.1 Imtroduction
5.2 Synthesizing Preconditions o000
5.3 Synthesizing Conjunctive Postconditions
5.4 Related Work
5.5 Conclusions and Future Work

REFERENCES o e

1ii

—_

11
11
14
23
27
31
37
40
40

CHAPTER 1: INTRODUCTION

The field of synthesis is a classical discipline in formal methods that is seeing a renaissance,
mainly due to a variety of new techniques [1, 2, 3, 4, 5] to automatically synthesize small
expressions or programs, given input-output examples [6, 7] or correctness specifications [1, §].
Such expressions are useful in niche application domains, including end-user programming for
data manipulation such as the FlashFill feature of Microsoft Excel [7, 9, 10, 11, 12, 13, 14, 15],
filling holes in program sketches [2, 3|, program transformations [16, 17|, computer-aided edu-
cation [18, 19, 20, 21, 22, 23], synthesizing network configurations and migrations [24, 25, 26],
optimizing code generated by compilers using Superoptimization [26, 27, 28, 29|, concur-
rent programming [30, 31, 32|, program repair [19, 22, 23, 33, 34, 35, 36|, code sugges-
tion [37, 38, 39, 40, 41|, distributed transition systems [42, 43|, probabilistic modelling [44], as
well as synthesizing annotations such as invariants [45, 46, 47|, and pre/post conditions [48].
The field of program synthesis has emerged as a thriving area in programming languages and
formal methods (see the articles [4, 5, 49]).

In order to introduce the reader to a simple model of program synthesis, let us consider
the following problem. Let us start with a specification of how an output relates to a tuple of
inputs, and set the goal of synthesis to automatically synthesize an expression or a program
implementation that realizes the given specification. More formally, let the synthesis problem
be stated using a specification VZ. ¢(f, ¥), where 9 is a quantifier-free first order logic (that
could be over a combination of interpreted theories) formula that uses a special uninterpreted
function symbol f. The goal of synthesis is then to find a concrete expression e for the
function f, that satisfies the specification, i.e., VZ. ¥ (e/f,) is valid. We hence want the
concrete definition e to satisfy the specification for all inputs. Note that the specification
can, of course, describe input-output examples as well, but in this case, we would also want
the expression to generalize well (one way to formalize generalization would be to insist that
e be a simple expression, in the style of an Occam’s razor).

In recent synthesis settings, in addition to the (correctness) specification, a syntactic
template for the desired expression is also provided. This syntactic constraint makes the
problem more tractable by limiting the search space of the solution, and also giving the
user fine-grained control over the potential solutions using a combination of syntactic and
semantic constraints. The syntax guided synthesis (SyGuS) [1, 50, 51] problem, presents a
standard input format to describe such problems, very similar to SMT-LIB [52], the common
interchange format used in SMT solvers. The SyGuS format thus provides a way to formalize

the syntactic guidance under a general framework based on logics and grammars.

Many algorithmic approaches have been proposed over the years to solve the synthesis
problem. Classically, deductive synthesis [53, 54] derives the program from the constructive
proof of a theorem using logical inferences and constraint solving. Another technique is to fix
a template structure syntax for the expression f, and formulate the synthesis problem as
a formula in first order logic of the form 3t V. 1 (t, ¥), where £ encodes the instantiation
of the template and v interprets the instantiated template using its semantics. Quantifier
elimination methods can then be used to reduce this problem to quantifier free satisfiability [5]
(also see recent work by us on such elimination algorithms [55]).

Alternatively, inductive synthesis [56, 57, 58] techniques learn from input-output examples,
generalizing from them to synthesize program expressions. An input-output pair consist of
concrete values that characterize the behavior of the function to synthesize, i.e., when the
function is called with each input, its return value is the corresponding output. Learning
from input-output example closely resembles problems in the field of machine learning [59],
especially the subfield of inductive programming, which has a long tradition in solving
this problem using inductive methods [60, 61]. Machine learning, which is the field of
learning algorithms that builds models from training data, is a rich field that encompasses
algorithms for several problems, including classification, regression, and clustering [59]. The
template-based approach discussed earlier, when used with input-output examples, has the
added benefit that we no longer need the universal quantification, and the formula becomes
quantifier-free. This is so because instead of quantifying over all inputs, the specification needs
to hold only on the provided input-output examples, and hence the universal quantification

can be replaced by a conjunctive formula.

Counter-example guided inductive synthesis (CEGIS): Turning to synthesis from
a more general specification than input-output examples, a new technique called counter-
example guided inductive synthesis (CEGIS) has emerged [1, 2, 3, 62]. The CEGIS ap-
proach [3] for program/expression synthesis advocates pairing inductive learning algorithms
with a verification oracle (see Figure 1.1). The idea is to have the learning algorithm propose
hypotheses expression to samples given by the verification oracle, in rounds of interaction,
until it finds an expression that the oracle can verify to satisfy the specification. In each
round, the verification oracle, when it finds the hypothesized expression to not satisfy the
specification, produces counterexamples that have concrete values and show why the proposed
hypothesis is wrong. A majority of the current synthesis approaches rely on counterexample
guided inductive synthesis [3, 45, 46, 63].

The CEGIS framework [1] for the FO specifications of the form VZ. ¢(f, %) that we

fixed, works as follows. The framework maintains a global set of counterexamples, which is

Hypothesis expression H

v

Learner Teacher
(learning algorithm) (verification oracle)

?

Counterexamples

Figure 1.1: Counter-Example Guided Inductive Synthesis (CEGIS) framework structure.

initially set to be empty. The learning takes place across multiple rounds, where, in each
round, the learner learns inductively from this global set of counterexamples, and proposes a
hypothesis H. The verification oracle then checks the validity of the hypothesis H against
the specification VZ. ¢(f,Z). It does so by checking if the formula obtained by substituting
the hypothesis H for f,i.e. VZ. ¢ (H/f, %), is valid. If this is the case, then learning stops
and the hypothesis H is declared as the solution. Otherwise, the verification oracle proposes
as counterexample a concrete valuation of & (using a satisfying model of the negation of the
formula), and adds it to the global set of counterexamples. The learner then proceeds to
the next round on the new set of counterexamples. Notice that though the valuation of &
is concrete, the learner needs to know the specification in order to understand what this

counterexample means.

Learning Frameworks for Synthesis: Though all the synthesis techniques mentioned
in this thesis is based on CEGIS, we would like to differentiate it from the paradigm of
"learning". A learning framework can be seen as a sub-framework of CEGIS where the learner
is entirely agnostic of the specification and learns only from input-output examples. Note
that the general CEGIS approach for FO specifications described is not of this form, as the
learner needs to know the specification to understand what the counterexample means.

In learning frameworks, we would like the learner to be agnostic of the specification and
also learn from a natural notion of samples. For example, when learning a predicate over ;, a
natural notion of a sample would be valuation of i with a + /- label. When learning functions,
a natural notion of a sample is input-output examples for the function being synthesized.

In this thesis, we will explore learning frameworks for synthesis, and in particular design
several frameworks where the oracle can be designed to give natural samples to a specification-

agnostic learner.

1.1 THESIS WORK

The synthesis problem, viewed through the learning lens, naturally poses synthesis as a
learning problem from concrete samples. However, the counterexamples that the verification
oracles provide as witnesses for showing a hypothesis is incorrect, cannot always be seen as
natural samples that can be interpreted by a learner that does not know the specification.
Furthermore, the samples/counterexamples that the oracle can provide greatly varies according
to the synthesis application.

The goals of this thesis are to study learning frameworks for synthesis, developing new
and more efficient algorithms for learning, exploring new classes of counterexamples, and

finding applications of synthesis to new domains.

The thesis statement is:

In learning for synthesis, co-designing the notion of counterexamples, the
learning algorithms, the verification oracle, and taking into account the aspects

of the application domain leads to more effective program synthesis.

In learning frameworks for synthesis, frameworks have three components: (1) the verification
oracle, (2) the notion of a natural counterexample, and (3) the learning algorithm. All these
three components required to be co-designed with the particular aspects of the application
domain for effective synthesis.

In the rest of this chapter, we discuss several learning frameworks for different applications,
illustrating the co-design of oracle-counterexample-learner for each of them. Table 1.1

summarizes these results. The later chapters describe each such framework in detail.

1.1.1 A SyGusS Solver for Synthesizing Piece-wise Functions and an Arithmetic
Instantiation

In Chapter 2, we look into the application of building a general purpose SyGuS solver
or synthesis engine to synthesize piece-wise functions (functions that split the domain into
regions and apply simpler functions to each region) from both logical specifications as well as
input-output examples. We propose a learning framework to build such an engine, where
we can use multiple learners to learn simple functions for regions, use learners to synthesize
predicates defining regions, and then compose them using a classifier.

The most natural class of counterexamples that can facilitate such learning are those that

Applications Framework Components
Oracle Counterexamples Learner
SyGuS: Compositional Expr.
I t-Output .

Piece-wise SMT Solvers n]%iargulepsu Synth. & Multi-label
Functions P Classification

Verlﬁcai.:lon: Incomplete I;Ir;)fz;l;f;gizﬂflgf ICE Learners
Inductive Verification Oracle .) including SORCAR
Invariants Validity of Invariants

Specification Valid and Invalid Conflict Resolver +
Mining: Test Generator Abstractions of Classification

Preconditions Input States Algorithms

Specification Positively Labeled Learner for
Mining: Test Generator Abstractions of Input Conjunctive

Postconditions and Output States Functional Concepts

Table 1.1: The different framework components of the applications we explored in this thesis.

precisely identify inputs for the synthesized function on which a given hypothesis is wrong.
Thus the requirement on the learners fixes the class of counterexamples we consider. However,
it turns out that not all synthesis specifications are such that such kinds of counterexamples
can be found.

We develop a theory of single-point definable specifications, a semantic property, whose
definition ensures such counterexamples always exist, and a subclass of single-point refutable
specifications, a syntactic property, that reduces finding such counterexample to satisfiability
problems over the underlying quantifier-free logic (which is often decidable). Our framework
works robustly for the class of single-point refutable specifications and we thus use SMT
solvers as the verification oracle.

We instantiate our framework to build a SyGuS solver for the class of conditional linear
integer arithmetic (CLIA) expressions. Our implementation uses an SMT solver as the
verification oracle, and learns the expression by combining leaf expression synthesis using
constraint-solving with predicate synthesis using enumeration, and tying them together
using a custom decision tree algorithm as the multi-label classifier. We demonstrate that
this compositional approach is competitive compared to traditional synthesis engines on
a set of CLIA specifications from the 2015 and 2016 SyGuS competitions [1, 51, 64]. Our

compositional learning technique inspired the SyGusS solver EUSolver [65], which was able

to synthesize piece-wise functions from the ICFP benchmarks [66] (which are input-output
specifications on bit-vectors) for the first time in the SyGuS competitions.

To summarize, in this framework: Specifications are either input-output examples or single-
point refutable specifications. Counterexamples are inputs on which a hypothesis is incorrect.
The learner is a compositional learner that combines a synthesis engine that synthesizes
expressions for subsets of inputs in various regions, an enumerative synthesis algorithm for
synthesizing boundaries between regions, and a decision-tree based multi-labeled classifier for

learning the final formula.

1.1.2 Synthesizing Inductive Invariants for Program Verification with Incomplete Logic
Engines

In Chapter 3, we look into the application of deductive program verification, where we
facilitate automatic verification by synthesizing inductive invariants. Once invariants are
found, program verification reduces to checking validity of verification conditions (expressed
in pure logic). Though prior learning-based counterexample guided inductive synthesis
(CEGIS) methods have been proposed [45, 46, 47, 67|, we look into the situation where the
validity of the verification conditions is undecidable. In a learning-based synthesis framework,
the verification oracle is hence incomplete i.e., the oracle resorts to sound but incomplete
heuristics to check the validity of the verification conditions and hence cannot generate a
concrete model when verification conditions are not provable.

The framework we propose in this chapter thus assumes that we have an incomplete
verification oracle. In this setting, we extract certain non-provability information from the
verification oracle as counterexamples when the conjectured invariant results in verification
conditions that cannot be proven. The non-provability information is a Boolean formula on
a fixed set of predicates that generalizes the reason for non-provability, hence pruning the
space of future conjectured predicates.

The notion of the counterexamples being non-provability information dictates the learning
algorithm we need to design to learn from such a sample of formulas. We reduce the formula-
driven problem of learning expressions from non-provability information to the data-driven
ICE model [45]. This reduction thus allows us to use a host of existing ICE learning algorithms
and results in a robust invariant synthesis framework that guarantees to synthesize a provable
invariant if one exists.

We evaluate our invariant synthesis framework to automatically verify two classes of
programs. First, programs that dynamically manipulate the heap (singly and doubly linked

lists, sorted lists, balanced and sorted trees). We use the natural proof verification engines [68]

as the oracle against a undecidable separation logic called DRYAD [69], that combine properties
of structure, separation, arithmetic, and data. Second, verification of programs against
specifications with universal quantification, which renders verification undecidable in general.
In both the cases we are able to automatically verify the programs efficiently.

To summarize, in this framework: The application is inductive invariant synthesis. We
consider two verification oracles: one oracle for heap verification using natural proofs and
the other a quantifier-instantiation based logic solver for annotations that involve universally
quantified formulas. In both cases, the verification oracle is sound but not complete. The
class of counterexamples encode non-provability information of particular predicates in the
postcondition of Hoare-triples. The learning algorithm needs to propose hypotheses that
include only provable concepts. We implement this using a reduction to ICE-learning of

Boolean formulas.

1.1.3 Property-driven synthesis of conjunctive inductive invariants: The SORCAR
ICE-Learning Algorithm

In Chapter 4, we present a novel ICE learning algorithm to learn conjunctive inductive
invariants over a fixed finite set of predicates P. Houdini [70] is an existing learner to learn
conjunctive inductive invariants, and synthesizes the tightest inductive invariant. Conse-
quently, it can ignore the property to be proven about the program. However, the tightest
invariant can be quite complex (have many conjuncts) and hard to synthesize.

We present SORCAR, a property driven learning algorithm for conjunctive inductive
invariants and performs better than existing Houdini based tools on certain classes of
benchmarks. Intuitively, SORCAR grows slowly a set of relevant predicates R C P in each
round and proposes the tightest conjunctive invariant over R. It guarantees convergence
to a conjunctive invariant (if one exists over P) in 2|P| rounds of communication with any
verification oracle.

We implement SORCAR on top of the BOOGIE program verifier [71]. We evaluate its
efficiency on two domains of benchmarks. The first is the class of programs consisting of GPU
programs handled by the tool GPUVerify [72, 73] to prove data race freedom. The second
class of programs dynamically update heaps against specifications in separation logics [74].
We compared SORCAR to the current state-of-the-art tools for these programs, which use
the HOUDINT algorithm. Though SORCAR did not work more efficiently on every program,
however, our empirical evaluation shows that it is overall more competitive than HOUDINI.
In general, SORCAR produces much smaller invariants, worked more efficiently overall in

verifying these programs, and verified a larger number of programs than HOUDINI.

To summarize: The SORCAR learning algorithm is a general conjunctive ICE learning
algorithm that can be used in many program verification algorithms. However, we use it
in two settings: one for GPUVerify programs and the other where validation of verification
conditions is incomplete (heap verification). The notion of counterexamples are either concrete

states or non-provability information, respectively.

1.1.4 Specification Mining: Preconditions and Postconditions for Methods

In Chapter 5, we consider the problem of synthesizing contracts, where we propose
frameworks to synthesize precondition and postcondition of a method in a class of a program
in an object-oriented language. In this context, the natural oracle to use would be a verification
engine that verifies programs (with loops/recursion). However, verification engines that can
do completely automated program verification are not often effective or scalable. We hence
consider using test generators as teaching oracles.

Given a program annotated with preconditions and assertions, the test generator creates a
valid object state (using object modifying methods) and concrete input parameters of the
method that satisfy the precondition. Furthermore, several test generators are guided by the

assertions, and try to generate inputs that violate them.

Synthesizing Preconditions:

In the learning framework we develop for synthesizing preconditions, we use as counterex-
amples abstractions of the input states, which consists of the primitive type inputs, and the
valuations of a certain set of observer methods of the non-primitive-type input objects.

Each input state (and similarly for counterexample) created by the test generator, can
be either valid: execute successfully and terminate, or invalid: encounter an uncaught
exception, or result in an assertion violation. Note that the predicates used in the logic for
expressing preconditions and the observer methods for deriving properties of objects, create
abstractions of input states. Abstractions of invalid input states must be excluded by the
precondition. However, abstractions of valid input states need not necessarily be included in
the precondition, as there could be input states with the same abstraction but are invalid.

We define the problem of precondition synthesis using a notion of ideal preconditions. An
ideal precondition for a method with respect to a test generator is a precondition which
satisfies two properties. First, safety: the test generator should not be able to find any invalid
input state allowed by the precondition. Second is maximality: the precondition should

include as many valid input states as possible. More precisely, it can exclude an abstraction

of input states only if there exists some invalid input state that has this abstraction. The
maximality requirement intuitively captures the desire to synthesize weakest (most liberal)
preconditions.

In our learning framework, counterexamples are positively and negatively labeled abstrac-
tion of input states. The meaning of the counterexample is as follows. The learner needs
to find a formula in a fixed logic L that (a) excludes all negatively labeled inputs, and (b)
includes all positively labeled inputs i unless there is another sample ¢’ that is negatively
labeled and is indistinguishable from ¢ by any formula in L.

The learning algorithms we propose for ideal preconditions first resolve all conflicts (conflicts
are pairs of samples labeled positive and negative that are indistinguishable by the logic L) by
reclassifying them as negative. A classification algorithm is then used to learn a hypothesis
precondition from the conflict resolved samples.

We implement a prototype of our framework in a tool called PROVISO using a learner based
on the ID3 classification algorithm [75], and PEX [76] as the test generator. We evaluate
PROVISO on two important tasks in specification inference: runtime-failure prevention and
conditional-commutativity inference [77]. The former problem asks to synthesize preconditions
that avoid runtime exceptions of a single method. The latter problem asks, given two methods,
find a precondition that ensures that the two methods commute, when called in succession.
PROVISO takes on average ~740 seconds per method/method pair to synthesize preconditions.
Moreover, 91% of the preconditions synthesized by PROVISO are safe, while 77% of the
preconditions are both safe and maximal.

To summarize, our framework for precondition synthesis has the following features. The
application is synthesizing precondition of a method of a class in an object oriented program.
The verification oracle is a test generator, which is inherently incomplete hence introduces
conflicting counterexamples. The counterexamples are valid and invalid abstractions of input
states. We formulate the synthesis problem using the notion of an ideal precondition with
respect to the oracle and a particular logic L for stating preconditions; this implicitly gives the
meaning of what counterexamples mean. The learning algorithm to find an ideal precondition
first resolves all conflicts in the sample and then uses a classification algorithm that does not

make any mistakes.

Synthesizing Conjunctive Postconditions

We finally propose a framework to synthesize conjunctive postconditions of a method using
a test generator as the oracle. We assume that the method is already annotated with a

precondition, which prevents all exception failures (this can be done using the precondition

synthesis mentioned above). Synthesized postconditions need to be strong, and ideally the
strongest postcondition expressible in a given logic.

In a learning framework, the test generator can only provide pairs of feasible input-
output states (where input states satisfy the precondition). Consequently, given a hypothesis
postcondition, a test generator can refute that the postcondition is correct by giving executions
that end in states that are not satisfied by the postcondition. However, it cannot refute
the assertion that the postcondition is the strongest one. In terms of counterexamples, we
can think of the test generator as being able to only provide positively labeled pairs of
abstractions of input and output states.

We propose to learn postconditions in a logic that consists of conjunctions of (a) predicates
over a fixed set P and (b) an equality expression that defines an output as a function of the
input. The predicates P and the parameters for the functions synthesized are based on input
parameters and abstractions of objects using observer methods.

The above logic facilitates learning tight concepts (as the above logic is closed under
conjunction). We synthesize functional relationships between input and output using a
SyGusS solver. We then seed this as equality predicates and add them to P, and then use the
elimination algorithm [78] to learn the semantically smallest conjunctive formula over the
predicates that includes all the positive counterexamples.

We implement a prototype of our framework in a tool called PRECIS with PEX [76] as the
test generator and the elimination algorithm as the learner. To synthesize equality predicates,
we used the enumerative solver [65] from the SyGuS competition [1]. We evaluated our
framework on datastructure methods from two open-source projects QuickGraph and the
NET Core. PRECIS was able to synthesize postconditions of reasonable size (average of 4.6
conjuncts per method), very efficiently taking an average time of 200s per method.

In summary, our learning framework for postcondition synthesis has the following features.
The application is to learn a strong conjunctive postcondition of a method that is already
annotated with a precondition. The counterexamples in this framework are only positive.
The oracle is a test generator, and counterexamples are abstractions of pairs of input and
output states that are always classified positively. The learning algorithm first synthesizes
new predicates using a SyGuS solver and then uses the elimination algorithm to learn the

tightest conjunctive postcondition.

These learning frameworks and the experimental results argue my thesis statement, that
co-designing the notion of counterexamples, the learning algorithms, the verification oracle,
and taking into account the aspects of the application domain leads to more effective program

synthesis.

10

CHAPTER 2: COMPOSITIONAL SYNTHESIS OF PIECE-WISE
FUNCTIONS BY LEARNING CLASSIFIERS

In this chapter, we propose a framework to build a general-purpose synthesis engine to
synthesize piece-wise functions (functions that split the domain into regions and apply simpler
functions to each region) from logical specifications or input-output examples.

In this framework, instead of learning the whole expression at once using one learner, we
use multiple learners to learn different parts of the expression modularly. We use a learner
for simple functions for fixed concrete inputs and another learner for predicates that can be
used to define regions. We then join these expressions into one expression, using a multi-label
classifier that does not make any mistakes and is biased towards learning smaller expressions,
thus achieving generalization.

For logical specifications, the most natural class of counterexamples that can facilitate
learning are those that precisely identify inputs on which a given hypothesis is wrong. However,
it turns out that not all synthesis specifications are such that such kinds of counterexamples
can be found.

We develop a theory of single-point definable specifications, a semantic property, whose
definition ensures such counterexamples always exist, and a subclass of single-point refutable
specifications, a syntactic property, that reduce finding such counterexample to satisfiability
problems over the underlying quantifier-free logic (which is decidable). Our framework works
robustly for the class of single-point refutable specifications and we thus use SMT solvers as

the verification oracle.

In particular, in this chapter:
e Specifications are either input-output examples or single-point refutable specifications.
e Counterexamples are inputs on which a hypothesis is incorrect.

e The learner is a compositional learner that combines a synthesis engine that synthesizes
expressions for a subset of inputs in a region, an enumerative synthesis algorithm for
synthesizing boundaries between regions, and and a decision-tree based multi-labeled

classifier for learning the final overall formula.

2.1 INTRODUCTION

We present a general technique that uses the CEGIS framework for synthesizing expressions,

that can learn piece-wise functions. A piece-wise function is a function that partitions the

11

input domain into a finite set of regions, and then maps each region using a simpler class of
functions. In this setup, we synthesize modularly with the help of two other synthesis engines,
one for synthesizing expressions for single inputs and another for synthesizing predicates
that separate concrete inputs from each other. The technique is general in the sense that
it is independent of the logic used to write specifications and the logic used to express the
synthesized expressions. The counterexample guided synthesis proceeds in the following

fashion:

e [n every round, the learner proposes a piece-wise function H for f, and the verification
oracle checks whether it satisfies the specification. If not, it returns one input p’ on

which H is incorrect (Returning such a counterexample is nontrivial).

e We show that we can now use an expression synthesizer for the single input p’ which
synthesizes an expression that maps p’ to a correct value. This expression synthesizer
will depend on the underlying theory of basic expressions, and we can use any synthesis

algorithm that performs this task.

e Once we have the new expression, we compute for every counterexample input obtained
thus far the set of basic expressions synthesized so far that work correctly for these
inputs. This results in a set of samples, where each sample is of the form (p, Z), where
p is a concrete input and Z is the set of basic expressions that are correct for p. The
problem we need to solve now can be seen as a multi-label classification problem— that
of finding a mapping from every input to an expression that is consistent with the set

of samples.

e Since we want a classification that is a piece-wise function that divides the input domains
into regions, and since the predicates needed to define regions can be arbitrarily complex
and depend on the semantics of the underlying logical theory, we require a predicate
synthesizer that synthesizes predicates that can separate concrete inputs with disjoint
sets of labels. Once we have such a set of predicates, we are equipped with an adequate

number of regions to find a piece-wise function.

e The final phase uses classification learning to generalize the samples to a function from
all inputs to basic expressions. The learning should be biased towards finding simple
functions, finding few regions, or minimizing the Boolean expression that describes the

piece-wise function.

The framework above requires many components, in addition to the expression synthesizer

12

and predicate synthesizer. First, given a hypothesis function H and a specification VZ. ¢ (f, Z),
we need to find a concrete counter-example input on which H is wrong.

It turns out that there may be mo such input point for some specifications and even if
there was, finding one may be hard. In current standard CEGIS approaches [1, 3], when H
and VZ. ¢(f,Z) are presented, the teacher simply returns a concrete value of Z for which
—(H/f,¥) is satisfied. We emphasize that such valuations for the universally quantified
variables cannot be interpreted as inputs on which H is incorrect, and hence cannot be
used with any learner that learns from input-output examples (including machine learning
algorithms).

We develop a theory of single-point definable specifications, a semantic property, whose
definition ensures such counterexample inputs always exist, and a subclass of single-point
refutable specifications, a syntactic property, that reduce finding such counterexample inputs
to satisfiability problems over the underlying quantifier-free logic (which is decidable). The
framework of single-point refutable specifications and the counterexample input generation
procedures we build for them is crucial in order to be able to use classifiers to synthesize
expressions.

Our framework works robustly for the class of single-point refutable specifications, and
we show how to extract concrete counterexamples, how to automatically synthesize a new
specification tailored for any input p’ to be given to the expression synthesizer, and how to
evaluate whether particular expressions work for particular inputs.

The classifier learning algorithm can be any learning algorithm for multi-label classification,
which is the problem of learning a predictive model (i.e., a classifier) from samples that are
associated with multiple labels (preferably with the learning bias as to learn small trees).
However, the classifier learning algorithm must ensure that the learned classifier is consistent
with the given samples (i.e., it is not allowed to misclassify datapoints in the training set).
Machine-learning algorithms more often than not make mistakes and are not consistent
with the sample, often because they want to generalize assuming that the sample is noisy.
We proposed an adaptation of decision-tree learning to multi-label learning that produces
classifiers that are consistent with the sample. We also explore a variety of statistical measures
used within the decision-tree learning algorithm to bias the learning towards smaller trees in
the presence of multi-labeled samples. The resulting decision-tree learning algorithms form
one class of classifier learning algorithms that can be used to synthesize piece-wise functions
over any theory that works using our framework.

We instantiated the framework to build an efficient synthesizer of piece-wise linear integer
arithmetic functions for specifications given in the theory of linear integer arithmetic. We

implement the components of the framework for single-point refutable functions: to synthesize

13

input counterexamples, to reformulate the synthesis problem for a single input, and to evaluate
whether an expression works correctly for any input. These problems are reduced to the
satisfiability of the underlying quantifier-free theory of linear integer arithmetic, which is
decidable using SMT solvers. The expression-synthesizer for single inputs is performed using
an inner CEGIS-based engine using a constraint solver.

We also looked into the problem of synthesizing the expressions for the restricted settings
of a unique specification where the specification permits only one solution. Assuming the
function to synthesize f is of arity n, then the problem of finding the expressions that satisfy
all the counterexamples can be viewed as the problem finding planes in a (n+1)-dimensional
space where the space describes the input-output behavior of the function f. The synthesizer
learns from all previously found counterexamples, where each counterexample is an input-
output pair and can be viewed as a point in this (n+ 1)-dimensional space. We would
essentially like to find a small set of planes, that include all the given points in this space.
We solve this problem using a greedy algorithm that uses geometric techniques to determine
coplanarity between points in this (n+1)-dimensional space.

The predicate synthesizer is instantiated using an enumerative synthesis algorithm. We
use a straightforward modification of Quinlan’s C5.0 algorithm [75, 79] to solve the disjoint
multi-label learning problem, and experimented with the different statistical measures to
bias the learning towards smaller trees. The resulting solver works extremely well on a
large class of conditional linear integer arithmetic benchmarks drawn from the SyGuS 2015
synthesis competition [51] and fared significantly better than all the traditional SyGusS solvers

(enumerative, stochastic, and symbolic constraint-based solvers).

2.2 THE SYNTHESIS PROBLEM AND SINGLE-POINT REFUTABLE
SPECIFICATIONS

The synthesis problem we tackle in this chapter is that of finding a function f that satisfies
a logical specification of the form VZ. ¢(f, Z), where 9 is a quantifier-free first-order formula
over a logic with fixed interpretations of constants, functions, and relations (except for f).
Further, we will assume that the quantifier-free fragment of this logic admits a decidable
satisfiability problem and furthermore, effective procedures for producing a model that maps
the variables to the domain of the logic are available. These effective procedures are required
in order to generate counterexamples while performing synthesis.

For the rest of the chapter, let f be a function symbol with arity n representing the target
function that is to be synthesized. The specification logic is a formula in first-order logic,

over an arbitrary set of function symbols F, (including a special symbol f), constants C, and

14

relations/predicates P, all of which with fixed interpretations, except for f. We will assume
that the logic is interpreted over a countable universe D and, further, and that there is a
constant symbol for every element in D. For technical reasons, we assume that negation is
pushed into atomic predicates.

The specification for synthesis is a formula of the form VZ. ¢ (f,) where 1 is a formula

expressed in the following grammar (where g € F, ¢ € C, and P € P):

Term t =— x|c| f(tr,....tn) | g(t) (2.1)
Formula ¢ =~ P(t)|-P(t)|oVe|pAyp (2.2)

We will assume that equality is a relation in the logic, with the standard model-theoretic
interpretation.

The synthesis problem is to find, given a specification Vz. ¢(f,), a definition for the
function f in a particular syntax that satisfies the specification. More formally, given a
subset of function symbols F C F (excluding f) and a subset of constants C and a subset of
relation/predicate symbols P C P, the task is to find an expression e for f that is a term

with free variables y, ..., y, adhering to the following syntax (where g € F,ceC, Pe 73)
Expr e u— ¢|y | g(L) | ite(P(T), e, e), (2.3)

such that e satisfies the specification (i.e., VZ. ¥(e/f, &) is valid).

2.2.1 Single-Point Definable Specifications

In order to be able to define a general CEGIS algorithm for synthesizing expressions for f
based on learning classifiers, as described in Section 2.1, we need to be able to refute any
hypothesis H that does not satisfy the specification with a concrete input on which H is
wrong. We will now define sufficient conditions that guarantee this property. The first is a
semantic property, called single-point definable specifications, that guarantees the existence
of such concrete input counterexamples and the second is a syntactic fragment of the former,
called single-point refutable specifications, that allows such concrete counterexamples to be
found effectively using a constraint solver.

A single-point definable specification is, intuitively, a specification that restricts how each
input is mapped to the output, independent of how other inputs are mapped to outputs.
More precisely, a single-point definable specification restricts each input p € D" to a set

of outputs Xz C D and allows any function that respects this restriction for each input. It

15

cannot, however, restrict the output on p based on how the function behaves on other inputs.
Many synthesis problems fall into this category (see Section 2.6 for several examples taken
from a recent synthesis competition).

Formally, we define this concept as follows. Let I = D™ be the set of inputs and O = D be
the set of outputs of the function being synthesized.

Definition 2.1 (Single-Point Definable (SPD) Specifications). A specification « is said to
be single-point definable if the following holds. Let F be the class of all functions that satisfy
the specification o. Let g : I — O be a function such that for every p € I, there exists some
h € F such that g(p) = h(p). Then, g € F (i.e., g satisfies the specification «).

Intuitively, a specification is single-point definable if whenever we construct a function
that maps each input independently according to some arbitrary function that satisfies the
specification, the resulting function satisfies the specification as well. For each input p; if
Xp is the set of all outputs that functions that meet the specification map p to, then any
function g that maps every input 7 to some element in X will also satisfy the specification.
This captures the requirement, semantically, that the specification constrains the outputs of
each input independent of other inputs.

Let us illustrate this definition with the following examples.
Example 2.1. Consider the following specifications in the first-order theory of arithmetic:

e The specification
Va,y. f(15,23) =19 A f(90,20) =91 A ... A f(28,24) = 35 (2.4)
is single-point definable. More generally, any set of input-output samples can be written
as a conjunction of constraints that forms a single-point definable specification.

e Any specification that is not realizable (i.e., that has no function that satisfies it) is

single-point definable.

e The specification

Vo, f(0)=0A f(x+1)= f(z) +1 (2.5)

is single-point definable as the identity function is the only function that satisfies this

specification. More generally, any specification that has a unique solution is single-point
definable.

While single-point definable specifications are quite common, there are prominent specifi-

cations that are not single-point definable. For example, inductive loop invariant synthesis

16

specifications for programs are not single-point definable, as counterexamples to the induc-
tiveness constraint involve two counterezample inputs (the ICE learning model [45] formalizes
this). Similarly, ranking function synthesis is also not single-point definable.

Note that for any single-point definable specification, if H is some expression conjectured
for f that does not satisfy the specification, there will always be one input p'€ D" on which
H is definitely wrong in that no correct solution agrees with H on p. More precisely, we

obtain the following directly from the definition.

Proposition 2.1. Let VZ. ¢(f, Z) be a single-point definable specification and let h: D" — D
be an interpretation for f such that Vz. ¥ (f,Z) does not hold. Then, there exists an input
P € D" such that for every function h': D™ — D that satisfies the specification, h(p) # W (p).

2.2.2 Single-Point Refutable Specifications

While the above proposition ensures that there is a counterexample input for any hypoth-
esized function that does not satisfy a single-point definable function, it does not ensure
that finding such an input is tractable. We now define single-point refutable specifications,
which we show to be a subclass of single-point definable specifications, and for which we can
reduce the problem of finding counterexample inputs to logical satisfiability of the underlying
quantifier-free logic.

Intuitively, a specification VZ. ¢(f, &) is single-point refutable if for any given hypothetical
interpretation H to the function f that does not satisfy the specification, we can find a
particular input p'€ D" such that the formula 37. =t (f, &) evaluates to true, and where the
truth-hood is caused solely by the interpretation of H on p'. The definition of single-point
refutable specifications is involved as we have to define what it means for H on p to solely
contribute to falsifying the specification.

We first define an alternate semantics for a formula ¢(f, ¥) that is parameterized by a set
of n variables ¥ denoting an input, a variable v denoting an output, and a Boolean variable
b. The idea is that this alternate semantics evaluates the function by interpreting f on
U to be v, but “ignores” the interpretation of f on all other inputs, and reports whether
the formula would evaluate to b. We do this by expanding the domain to D U {1}, where
1 is a new element, and have f map all inputs other than « to L. Furthermore, when
evaluating formulas, we let them evaluate to b only when we are sure that the evaluation
of the formula to b depended only on the definition of f on 4. We define this alternate
semantics by transforming a formula (f,) to a formula with the usual semantics but over

an extended domain Dt = DU {L}. In this transformation, we use if-then-else (ite) terms

17

for simplicity. Moreover, given a vector Z'= (z1,...,2) (e.g., of variables), we use z[i] as a

shorthand for the i-th entry z; of Z' (i.e., z[i] = z;) throughout the rest of this chapter.

Definition 2.2 (Isolate Transformer). Let @ be a vector of n first-order variables (where n
is the arity of the function to be synthesized), v a first-order variable (different from ones
in i), and b € {T,F} a Boolean value. Moreover, let DT = D U{ L}, where L & D, be the
extended domain, and let the functions and predicates be extended to this domain (the precise

extension does not matter).
For a formula (f,), we define the formula Isolatez,,(Y(f,Z)) over DT by

Isolateg , »(V(f, 7)) = ite (\/ x; = L, b, Isolz . p(Y(f, f))), (2.6)

z;

where Isolz ., s defined recursively as follows:

Isolg p() :

Isolgz p(c) :

x (2.7)
c (2.8)

k
Isolg v (g(ty, . ..) = ite <\/ Isolip(t:) = L, L, g(Isoliuy(ty), ., fsozﬁ,v,b(t,C))) (2.9)
=1

Isolz o (f(t1, ... 1)) = ite </\ Isolgz (L) = uli], v, J_> (2.10)
=1
k

Isolg 4 (P(ty, . .. 1)) = ite <\/ Isoli (t1) = L, =b, P(Isolzuy(ty), -, Isozﬁ,v,b(tk))>

i=1

(2.11)
k

Isolz b (= P(t1, ..., tg)) = ite <\/ Isolz . p(t;) = L, b, ﬁP([SOZQ,U7b(t1)7 e]sollm’b(tk)>>

i=1

(2.12)

Isolz b (1 V 92) = Is0lz (1) V Is0lg . p(02) (2.13)

Isolz b (1 A p2) = Is0lz 1 (1) A Is0lz . p(02) (2.14)

Intuitively, the function Isolatez, (1)) captures whether ¢ will evaluate to b if f maps u to
v and independent of how f is interpreted on other inputs. A function of the form f(¢,...t,)
is interpreted to be v if the input matches @ and otherwise evaluated to L. Functions on

terms that involve L are sent to L as well. Predicates are evaluated to b only if the predicate

18

is evaluated on terms none of which is 1 — otherwise, they get mapped to —b, to reflect that
it will not help to make the final formula) evaluate to b. Note that when Isolatez, (1))
evaluates to —b, there is no property of ¢ that we claim. Also, note that Isolateg , (¢ (f, T))
has no occurrence of f in it, but has free variables Z, @ and v. The following examples

illustrates the isolate transformer.

Example 2.2. Consider the (single-point refutable) specification

G(foa) = fa) > a+1 (2.15)

in linear integer arithmetic over a single variable x. The formula Isol;,; will have free
variables z, u, and v (note that = and u are variables not vectors of variables in this example).

In the first step, we adapt the semantics of the operator + and the predicate > to account
for the new value L by introducing a new operator +, and a new predicate >, . Given two

terms t; and t,, the operator 4+ is defined by

oty =ite(ty = LVty= 1, Lty +1), (2.16)
while the predicate >, is defined by
t1 > tg = Zte(tl =1Viy= J_, J_,tl > tg) (217)

In both cases, the result is L if one one of the terms evaluates to 1, whereas the original
semantics is retained otherwise.

In the second step, we can now apply the isolate transformer to :

Isolz oy (V(f, x)) = Isolgpp(f(z) > + 1) (2.18)
= Isolz,p(f(z)) >0 ([SOlﬁw’b(x) +1]solgﬂ,’b(ln (2.19)
= qte(r = u,v, L) > (x4, 1). (2.20)

In total, we obtain
Isolateg o (V(f,) = ite(m = 1, =b, dite(r = u,v, L) >, (x4, 1)) (2.21)

which captures whether 1 will evaluate to b if f maps u to v (and independent of how f is

interpreted on other inputs).

We can show (using a induction over the structure of the specification) that the isolation
of a specification to a particular input with b = F', when instantiated according to a function

that satisfies a specification, cannot evaluate to false. This is formalized below.

19

Lemma 2.1. Let VZ. ¥(f, &) be a specification and h: D™ — D a function satisfying the
specification. Then, there is no interpretation of the variables in @ and & (over D) such that

if v is interpreted as h(u), the formula Isolatez, r(¢Y/(f, @)) evaluates to false.

Proof. Let VZ. 1(f, Z) be a specification and h: D™ — D a function satisfying the specification.
Moreover, let 4 a vector of variables over the domain D, v a variable over D, and b € {T, F'}

a Boolean value. Finally, fix a valuation d, € D for each free variable z in Isolateg , »(¢(f, Z))
such that d, = h(dum, o ,du[n]>.
We split the proof into two parts:

1. We show that if Isolz, () evaluates to a non-L value (i.e., to a value in D) for a term

t, then t evaluates to the same value.

2. Using Part 1, we show that if Isolz, r(p) evaluates to false for a formula ¢, the formula

@ evaluates to false as well.

The claim of Lemma 2.1 then follow immediately from Part 2 and the definition of Isolateg

since h satisfies the specification and the variable v is interpreted as h(u).
We prove the first part using an induction over the structure of a term t.

Base case Let t = x or t = c. Then, the claim holds immediately by definition of Isolg .

Induction step In the induction step, we distinguish between ¢ = g(t1,...,t;) and t =
fltr, oo tn)
o Let t = g(ty,...,t) and assume that Isolz, ;(t) evaluates to a non-_L value, say

d € D. By definition of Isolz, p, this means that Isolz, ,(t;) evaluates to a non-
1 value, say d; € D, for each i € {1,...,k}. Moreover, Isolz,;(t) evaluates
to g(Isolz,p(t1),. .., Isolz,p(tx)) and, hence, d = g(dy,...,d;). Applying the
induction hypothesis now yields that ¢; also evaluates to d;. Since t = g(t1,...,1x),

this means that ¢ evaluates to d, as claimed.

o Lett = f(t1,...,t,) and assume that Isolz, ;(t) evaluates to a non-_L value. By
definition of Isol;, p, this means that Isolz, ,(t;) = u[i] for i € {1,...,n}, Moreover,
Isolz, »(t) evaluates to d,. Applying the induction hypothesis now yields that
t; evaluates to dg;) € D for each ¢ € {1,...,n}. Since t = f(t1,....,t,) =
f(@[l],...,d[n]) and v is interpreted as h(¥), this means that ¢ evaluates to

h(dapy, - - -, dgp)) = dy, as claimed.

20

We prove the second part using an induction over the structure of a formula ¢. Recalls that

we fix b = F for this part of the proof.

Base case In the base case, we distinguish between the two cases ¢ = P(t1,...,1;) and
Y = ﬁp(tl,...,tk).

e Let ¢ = P(ty,...,t;) and assume that Isolz, r(p) evaluates to false. By
definition of Isolz,p, this means that Isolz, r(t;) evaluates to a non-L value,
say d; € D, for each ¢ € {1,...,k}. Moreover, Isolz, r(p) evaluates to
P(Isolz, p(t1), ..., Isolz, r(t;)) and, hence, P(dy,...,dy) evaluates to false. The
first part of the proof now yields that ¢; evaluates to d;. Since ¢ = P(t1,...,1;),

this means that ¢ evaluates to false, as claimed.

e The case ¢ = —P(ty,...,1;) is analogous to the case ¢ = P(t1,...,t;) and
therefore skipped.

Induction step In the induction step, we distinguish between the two cases ¢ = 1 V @

and ¢ = 1 A @a.

o Let ¢ = 1 V o and assume that Isolz, p(¢) evaluates to false. Thus, both
Isolz , p(¢1) and Isolz, p(p2) evaluate to false. Applying the induction hypothesis
yields that both ¢, and s evaluate to false. Thus, ¢ = 1 V @, evaluates to false,

as claimed.

e The case ¢ = @1 A ¢y is analogous to the case ¢ = @1 V ¢y and therefore
skipped. Q.E.D.

We can also show (again using structural induction) that when the isolation of the
specification with respect to b = F evaluates to false, then v is definitely not a correct output

on u.

Lemma 2.2. Let VZ. ¢(f, %) be a specification, p € D™ an interpretation for i, and q €
D an interpretation for v such that there is some interpretation for ¥ that makes the
formula Isolatez , p(Y(f, %)) evaluate to false. Then, there exists no function h satisfying the

specification that maps p to q.

Proof. Let h be a function that satisfies the specification and maps p’'to g. Then, ¥(f, Z) eval-
uates to true for every interpretation of . By Lemma 2.1, this means that Isolatez ., r(¢(f, Z))
always evaluates to true or L (it cannot evaluate to false because then ¢ would evaluate
to false as well). However, this is a contradiction to the assumption that there exists an

interpretation for # on which the formula Isolatez, r(¢(f, %)) evaluates to false. Q.E.D.

21

We can now define single-point refutable specifications.

Definition 2.3 (Single-Point Refutable Specifications (SPR)). A specification VZ. 1 (f, &) is
said to be single-point refutable if the following holds. Let H : D™ — D be any interpretation
for the function f that does not satisfy the specification (i.e., the specification does not hold
under this interpretation for f). Then, there exists some input p that is an interpretation for

@ and an interpretation for & such that when v is interpreted to be H (W), the isolated formula
Isolateg , p(V(f, %)) evaluates to false.

Intuitively, the above says that a specification is single-point refutable if whenever a
hypothesis function H does not satisfy a specification, there is a single input p such that
the specification evaluates to false independent of how the function maps inputs other than
p. More precisely, 1 evaluates to false for some interpretation of Z only assuming that
@) = H@).

In fact, single-point refutable specifications are single-point definable, which we formalize

below.

Lemma 2.3. If a specification VYZ. ¥ (f,T) is single-point refutable, then it is single-point
definable.

Proof. Let V. ¢(f, Z) be a single-point refutable specification, and assume that it is not single-
point definable. Moreover, let F be the class of all functions that satisfy this specification.
Then, there exists a function A’ : D™ — D such that for every input p’ € D™, there exists
some function h € F such that A'(p) = h(p), and yet A’ does not satisfy the specification. By
single-point refutability of the specification, there must be some input p such that when we
interpret v = h/(p), there is an interpretation of Z such that Isolates, p(¥(f, ¥)) evaluates
to false. Let h € F be some function that agrees with A’ on p. By Lemma 2.2, there is no
function that satisfies the specification and that maps « to v, which contradicts the fact that
h satisfies the specification. Q.E.D.

Let us illustrate the definition of single-point refutable specifications through an example

and a non-example.
Example 2.3. Consider the following specifications in the first-order theory of arithmetic:

e The specification
Va,y. £(15,23) =19 A £(90,20) = 91 A ... A f(28,24) = 35 (2.22)

is single-point refutable. More generally, any set of input-output samples can be written

as a conjunction of constraints that forms a single-point refutable specification.

22

e The specification

Ve, f(0)=0A f(z+1) = f(z) +1 (2.23)

is not a single-point refutable specification, though it is single-point definable. Given a
hypothesis function (e.g., H(i) = 0 for all 7), the formula f(x + 1) = f(z) 4+ 1 evaluates
to false, but this involves the definition of f on two inputs, and hence we cannot
isolate a single input on which the function H is incorrect. (In evaluating the isolated
transformation of the specification parameterized with b = F', at least one of f(z + 1)

and f(x) will evaluate to L and, hence, the whole formula will never evaluate to false.)

When a specification V. 1(f, Z) is single-point refutable, given an expression H for f that

does not satisfy the specification, we can check satisfiability of the formula
i 37, (v = H(ii) A ~Isolateq, p((H/f,))). (2.24)

Assuming the underlying quantifier-free theory has a decidable satisfiability problem and one
can construct models, the valuation of « gives a concrete input p, and Lemma 2.2 shows that
H is definitely wrong on this input. This will form the basis of generating counterexample

inputs in the synthesis framework that we present next.

2.3 A GENERAL SYNTHESIS FRAMEWORK BY LEARNING CLASSIFIERS

We now present our general framework for synthesizing functions over a first-order theory
that uses machine-learning of classifiers. Our technique, as outlined in the introduction, is a
counterexample-guided inductive synthesis approach (CEGIS), and works most robustly for
single-point refutable specifications.

Given a single-point refutable specification V. ¢(f, Z), the framework combines several
simpler synthesizers and calls to SMT solvers to synthesize a function, as depicted in Figure 2.1.
The solver globally maintains a finite set of expressions E, a finite set of predicates A (also
called attributes), and a finite set S of multi-labeled samples, where each sample is of the
form (p, Z) consisting of an input 5 € D™ and a set Z C FE of expressions that are correct for
P (such a sample means that the specification allows mapping p' to e(p), for any e € Z, but
not to €'(p), for any ¢ € E '\ Z).

Phase 2.1. In every round, the classifier produces a hypothesis expression H for f. The
process starts with a simple expression H, such as one that maps all inputs to a constant.

We feed H in every round to a counterexample input finder module, which essentially is a

23

Global:

Samples: 8 Attribute Synthesizer H:D"—~D
. > Classifier
Attributes: A Update: A
Expressions: E
ves S {5 2)h4
eeFE Counter-example finder
SMT Solver Label Finder Expression Synthesizer using an SMT solver
S :{(7,2)} Update: 5, B B | Spec:VEYl(£,8) | 5 | I 3IE (v=H()
y/n A~Isolateg,,F (4(f, %))

Figure 2.1: The general synthesis framework based on learning classifiers
call to an SMT solver to check whether the formula
3 Jv 37, (v = H(U) A ~Isolatez, p(Y(f, X)) (2.25)

is satisfiable. Note that from the definition of the single-point refutable functions (see
Definition 2.3), whenever H does not satisfy the specification, we are guaranteed that this
formula is satisfiable, and the valuation of @ in the satisfying model gives us an input p on
which H is definitely wrong (see Lemma 2.2). If H satisfies the specification, the formula
would be unsatisfiable (by Lemma 2.1) and we can terminate, reporting H as the synthesized

expression.

Phase 2.2. The counterexample input p is then fed to an expression synthesizer whose
goal is to find some correct expression that works for p. We facilitate this by generating a
new specification for synthesis that tailors the original specification to the particular input p.

This new specification is the formula

bly (f,) = Isolateq, (¥ (f, 2))[F/, f(7)/v]. (2.26)

Intuitively, the above specification asks for a function f that “works” for the input p (i.e.,
there exists a function ¢ satisfying the specification such that ¢(p) = f(p)). We do this by
first constructing the formula that isolates the specification to @ with output v and demand
that the specification evaluates to true; then, we substitute p for « and a new function symbol
f evaluated on p for v. Any expression synthesized for f in this synthesis problem maps p to

a value that is consistent with the original specification, which we formalize next.

Lemma 2.4. Let ¢(f,%) be a single-point refutable specification and F the class of all
functions satisfying ¥ (f, Z). Moreover, let p€ D™ be an input to f, and let e be a solution to

24

the synthesis problem with specification |z (f, Z). Then, there exists a function g € F such
that g(p) = e(p).

Proof. Using similar arguments as in the proof of Lemma 2.1, we can show that if Isolz, r(¢)
(and, hence, Isolatez, r(¢)) evaluates to true on some valuation of the free variables &, ,
and v, then the formula ¢ also evaluates to true on the valuation for Z. Thus, by substituting
p for @ in Isolatez , 7(¥(f, %)), we know that if Isolatez, r(¢/(f,Z))[p/u] evaluates to true,
then ¢ evaluates to true if f maps 7 to v. Moreover, by substituting f(7) for v, we obtain
the specification ¥z (1, Z), which constraints f such that »(f, %) to evaluates to true if
f(p) = f (p). Thus, any solution e to the synthesis problem with specification] (f, z)
guarantees that ¢(f, 7) evaluates to true if f(p) = e(p).

Now, let h € F some function satisfying . Since v is single-point refutable (and, hence,

also single-point definable), the function

. e(p) if Z=p; and
9(7) = (2.27)
h(Z) otherwise

also satisfies the specification. Thus, ¢ is a function satisfying g € F and ¢(p) = e(p).
Q.E.D.

We emphasize that this new synthesis problem is simpler than the original problem (since
it only requires to synthesize an expression for a single input) and that we can use any
(existing) expression synthesizer to solve it. One important challenge in this context clearly
is to synthesize an expression that is “good” (or general) in the sense that it works for all
(or at least many) inputs in the region p belongs to. One possible way to achieve this is
to apply Occam’s razor principle and synthesize an expression that is as simple as possible
with respect to some total order of the expressions (e.g., the length of the expression or
the maximal nesting of sub-expressions). Another way is to define a distance metric on
inputs and synthesize an expression that does not only work for the input p" but also for
other known inputs in the sample S whose distance to p is small. We describe these two
approaches and various further heuristics in more detail in Section 2.5.1, where we present

our implementation of a synthesizer for linear integer arithmetic expressions.

Phase 2.3. Once we synthesize an expression e that works for p, we feed it to the next phase,
which adds e to the set of all expressions E (if e is new) and adds p to the set of samples.
It then proceeds to find the set of all expressions in F that work for all the inputs in the
samples, and computes the new set of samples. In order to do this, we take every input 7

that previously existed, and ask whether e works for 7, and if it does, add e to the set of

25

labels for 7. Also, we take the new input p and every expression ¢ € E, and check whether
e’ works for p.
To compute this labeling information, we need to be able to check, in general, whether an

expression € works for an input 7. We can do this using a call to an SMT solver that checks

o~

whether the formula VZ. ¥ (¢/(7)/ f(7), Z) is valid.

Phase 2.4. We now have a set of samples, where each sample consists of an input and a set
of expressions that work for that input. This is when we look upon the synthesis problem as
a classification problem— that of mapping every input in the domain to an expression that
generalizes the sample (i.e., that maps every input in the sample to some expression that it
is associated with it). In order to do this, we need to split the input domain into regions
defined by a set of predicates A. We hence need an adequate set of predicates that can define
enough regions that can separate the inputs that need to be separated.

Let S be a set of samples and let A be a set of predicates. Two samples (7, Ey) and
(jH’,Eg) are said to be inseparable if for every predicate p € A, p(]) = p(j_7). The set of
predicates A is said to be adequate for a sample S if any set of inseparable inputs in the
sample has a common label as a classification. In other words, if every subset T" C S,
say T = {(fl, Ey), (z}, Ey), ... (ft, E)}, where every pair of inputs in 7' is inseparable, then

t_ E; # (0. We require the attribute synthesizer to synthesize an adequate set of predicates
A, given the set of samples.

Intuitively, if T is a set of pairwise inseparable points with respect to a set of predicates P,
then no classifier based on these predicates can separate them, and hence they all need to
be classified using the same label; this is possible only if the set of points have a common

expression label.

Phase 2.5. Finally, we give the samples and the predicates to a classification learner, which
divides the set of inputs into regions, and maps each region to a single expression such that
the mapping is consistent with the sample. A region is a conjunction of predicates and
the set of points in the region is the set of all inputs that satisfy all these predicates. The
classification is consistent with the set of samples if for every sample (7, Z) € S, the classifier
maps 7 to a label in Z. (In Section 2.4, we present a general learning algorithm based on
decision trees that learns such a classifier from a set of multi-labeled samples, and which
biases the classifier towards small trees.)

The classification synthesized is then converted to an expression in the logic (this will
involve nested ite expressions using predicates to define the regions and expressions at leaves
to define the function). The synthesized function is fed back to the counterexample input

finder, as in Phase 1, and the process continues until we manage to synthesize a function

26

that meets the specification.

2.4 MULTI-LABEL DECISION TREE CLASSIFIERS

In this section, we sketch a decision tree learning algorithm for a special case of the so-called
multi-label learning problem, which is the problem of learning a predictive model (i.e., a
classifier) from samples that are associated with multiple labels. (We refer to standard
textbooks on machine learning, e.g., [59], for more information on decision tree learning.)
For the purpose of learning the classifier, we assume samples to be vectors of the Boolean
values B = {F, T} (these encode the values of the various attributes on the counterexample
input returned). The more general case that datapoints also contain rational numbers can
be handled in a straightforward manner as in Quinlan’s C5.0 algorithm [79, 79].

To make the learning problem precise, let us fix a finite set L = {A,..., At} of labels
with & > 2, and let Z4,...,Z,, € B" be m individual inputs (in the following also called

datapoints). The task we are going to solve, which we call disjoint multi-label learning problem
(cf. [80]), is defined as follows.

Definition 2.4 (Disjoint Multi-Label Learning Problem). Given a finite training set S =
{(Z1, Y1), ..., (@, Y)} where Y; C L and Y; # 0 for every i € {1,...,m}, the disjoint multi-
label learning problem is to find a decision tree classifier h: B™ — L such that h(Z) € Y for
all (Z,Y) € S.

Note that this learning problem is a special case of the multi-label learning problem
studied in machine learning literature, which asks for a classifier that predicts all labels that
are associated with a datapoint. Moreover, it is important to emphasize that we require
our decision tree classifier to be consistent with the training set (i.e., it is not allowed to
misclassify datapoints in the training set), in contrast to classical machine learning settings
where classifier are allowed to make (small) errors.

We use a straightforward modification of Quinlan’s C5.0 algorithm [79, 79] to solve
the disjoint multi-label learning problem. This modification, sketched in pseudo code as
Algorithm 2.1, is a recursive algorithm that constructs a decision tree top-down. More
precisely, given a training set .S, the algorithm heuristically selects an attribute i € {1,...,n}
and splits the set into two disjoint, nonempty subsets S; = {(#,Y) € S | Z[i] = T} and
S_i ={(#,Y) € S| Z[i] = F} (we explain shortly how the attribute i is chosen). Then the
algorithm recurses on the two subsets, whereby it no longer considers the attribute ¢. Once
the algorithm arrives at a set S’ in which all datapoints share at least one common label
(i.e., there exists a A € L such that A € Y for all (#,Y) € 5’), it selects a common label

27

Algorithm 2.1: Multi-label decision tree learning algorithm
Input: A finite set S C B™ x 2F of datapoints.

1 return DecTree (S5, {1,...,n}).

2 Procedure DecTree (Set of datapoints S, Attributes A):

3 Create a root node 7.

4 if if all datapoints in S have a label in common (i.e., there exists a label A such that

A €Y foreach (Z,Y) € S) then

5 ‘ Select a common label A and return the single-node tree r with label A.

6 else

7 Select an attribute ¢ € A that (heuristically) best splits the sample S.

8 Split S into S; = {(Z,Y) € S| Z[i] =T} and S—; = {(&,Y) € S | Z[i] = F}.

9 Label r with attribute 7 and return the tree with root node r, left subtree DecTree

(Si, A\ {i}), and right subtree DecTree (S-;, A\ {i}).

10 end
11 end

A (arbitrarily), constructs a single-node tree that is labeled with A, and returns from the
recursion. However, it might happen during construction that a set of datapoints does not
have a common label and cannot be split by any (available) attribute. In this case, it returns
an error, as the set of attributes is not adequate (which we make sure does not happen in
our framework by synthesizing new attributes whenever necessary).

The following theorem states the correctness of Algorithm 2.1 (i.e., that the algorithm
indeed produces a solution to the disjoint multi-label learning problem), which is a result

independent of the exact way an attribute is chosen.

Theorem 2.1. Let L = {\i,....,\} be a set of labels with k > 2 and S =
{(#1,Y1), ..., (&, V) } CB™ x 2L a finite training set where Y; # 0 for everyi € {1,...,n}.
Moreover, assume that each two distinct datapoints (Z,Y), (Z,Y') € S can be separated by
some attribute i € {1,...,n} (i.e., Z[i] # Z'[i]). Then, Algorithm 2.1 terminates and returns
a decision tree classifier h: B" — L that satisfies h(Z) € Y for each (Z,Y) € S.

Proof. We show Theorem 2.1 by induction over the construction of the tree.

Base case Assume that the function DecTree is called with a set .S of datapoint that share
a common label (i.e., that there exists a label A such that A € Y for each (Z,Y) € 5).
Then, the condition in Line 4 evaluates to true and the algorithm returns a decision
tree h consisting of a single node that is labeled with a label shared by all datapoints
of S (see Line 5). Thus, h satisfies h(Z) € Y for each (Z,Y) € S.

Induction step Assume that the function DecTree is called with a set S of datapoints that

28

do not share a common label and a set A of available attributes. Then, the condition

in Line 4 is false, and the algorithm proceeds with Lines 7 to 9.

First, we observe that A # (): since we assume that all datapoints can be separated by
an attribute, A = () implies that S is a singleton and, hence, the condition in Line 4
would be true. Thus, the algorithm can pick an attribute i € A (Line 7), partition
S into two subsamples S;, S—; (Line 8), and recursively constructs the decision trees
h; = DecTree(S;, A\ {i}) and h_; = DecTree(S-;, A\ {i}) (Line 9). Finally, it returns

the decision tree h with root node r whose subtrees are h; and h-;, respectively.

Since the root of h is labeled with attribute ¢, one can write h as

h(@) =

hi(#) if #li] = T; and (2.28)
i

hoy(Z) it 7i] = F.

Moreover, applying the induction hypothesis yields that h; satisfies h;(Z) € Y for each
(7,Y) € S; and h-;(Z) € Y for each (Z,Y) € S;. Thus, if Z[i] = T for some (Z,Y) € S,
then (Z,Y) € S; and, hence, h(Z) = h;(Z) € Y; on the other hand, if Z[i] = F' for some
(Z,Y) € S, then (Z,Y) € S_; and, hence, h(Z) = h-;,(¥) € Y. Q.E.D.

The selection of a “good” attribute to split a a set of datapoints lies at the heart of the
decision tree learner as it determines the size of the resulting tree and, hence, how well the
tree generalizes the training data. This problem is best understood in the simpler single-label
setting in which datapoints are labeled with one out of two possible labels, say 0 or 1.
To obtain a small decision tree, the learning algorithm should split samples such that the
resulting subsamples are as pure as possible (i.e., one subsample contains as many datapoints
as possible labeled with 0, whereas the other subsample contains as many datapoints as
possible labeled with 1). This way, the learner will quickly arrive at samples that contain a
single label and, hence, produce small a tree.

The quality of a split can be formalized by the notion of a measure, which, roughly, is a
measure g mapping pairs of sets of datapoints to a set R that is equipped with a total order
= over elements of R (usually, R = R and =< is the natural order over R). Given a set S
to split, the learning algorithm first constructs subsets S; and S-; for each available attribute
i and evaluates each such candidate split by computing u(S;, S—;). It then chooses a split
that has the least value.

In the single-label setting, information theoretic measures, such as information gain (based
on Shannon entropy) and Gini, have proven to produce successful classifiers [81]. In the

case of multi-label classifiers, however, finding a good measure is still a matter of ongoing

29

research (e.g., see [82] for an overview). Both the classical entropy and Gini measures can be
adapted to the multi-label case in a straightforward way by treating datapoints with multiple
labels as multiple identical datapoints with a single label. More precisely, the main idea is to
replace each multi-labeled datapoint (Z, {\1, ..., A\x}) with the datapoints (¥, \1),. .., (Z, Ax)
and proceeds as in classical decision tree learning.

We now briefly sketch these modifications, including a modification described by [83]. In

all cases, we fix R = R and let < be the natural order over R.

Entropy Intuitively, entropy is a measure for the amount of “information” contained in a
sample; the higher the entropy, the higher the randomness of the sample. Formally,
one defines the entropy of a sample S with multiple labels by

e(S) == px-logypa, (2.29)

AEL

where p, is the relative frequency of the label A\ defined by

{@Y) eS| ey}

(2.30)
Y@ves Y]

P =

The corresponding measure (S, So) is the weighted average of e(S;) and e(Ss).

Gini One can think of Gini as the probability of making a classification error if the whole
sample is uniformly labeled with a randomly chosen label. Formally, for a sample S

with multiple labels, one defines Gini by

9(S)=">_ pr-py, (2.31)

NANEL

where p, is again the relative frequency of the label A\ (see above). The Gini measure
g(S1,S2) is the weighted average of ¢(S1) and g(S2).

pg-entropy The modification of entropy by [83] accounts for multiple labels by considering
for each label the probability of being labeled with A (i.e., the relative frequency of \)
as well as probability of not being labeled with A\. More precisely, for a sample .S with
multiple labels, Clare and King define

pg-e = — > _ px-logypr + g - logy an, (2.32)
AEL

30

where p) is the relative frequency of the label A and gy = 1—py. As measure fip,.(S1, S2),
Clare and King use the weighted average of pg-e(S;) and pg-e(Ss).

However, all of these approaches share the disadvantage that the association of datapoints
to sets of labels is lost. As a consequence, measures can be high even if all datapoints
share a common label; for instance, such a situation occurs for S = {(#1,Y1), ..., (Zm, Yim)}
with {\1,..., A} CY; for every i € {1,...,m}. Therefore, one would ideally like to have a
measure that maps to 0 if all datapoints in a set share a common label and to a value strictly
greater than 0 if this is not the case. We now present a measure, based on the combinatorial
problem of finding minimal hitting sets, that possesses this property. To the best of our
knowledge, this measure is a novel contribution and has not been studied in the literature.

For a set S of datapoints, a set H C L is a hitting set it HNY # () for each (Z,Y) € S.
Moreover, we define the measure hs(S) = minpiting set #r |[H| — 1 (i.e., the cardinality of a
smallest hitting set reduced by 1). As desired, we obtain hs(S) = 0 if all datapoints in S
share a common label and hs(S) > 0 if this is not the case. When evaluating candidate
splits, we would prefer to minimize the number of labels needed to label the datapoints in
the subsets; however, if two splits agree on this number, we would like to minimize the total
number of labels required. Consequently, we propose R = N x N with (n,m) < (n/,m’) if

and only if n < n' or n =n' Am < m’, and as measures
ns(S1, S2) = (max {hs(S1), hs(Sa)}, hs(Sh) + hs(Sh)). (2.33)

Unfortunately, computing hs(S) is computationally hard. Therefore, we implemented a
standard greedy algorithm (the dual of the standard greedy set cover algorithm [84]), which
runs in time polynomial in the size of the sample and whose solution is at most logarithmically

larger than the optimal solution.

2.5 A SYNTHESIS ENGINE FOR LINEAR INTEGER ARITHMETIC

We now describe an instantiation of our framework (described in Section 2.3) for synthesizing
functions expressible in linear integer arithmetic against quantified linear integer arithmetic
specifications.

The counterexample input finder (Phase 1) and the computing of labels for counterexample
inputs (Phase 3) are implemented straightforwardly using an SMT solver (note that the
respective formulas will be in quantifier-free linear integer arithmetic). The Isolate() function
works over a domain D U {L}; we can implement this by choosing a particular element ¢ in

the domain and modeling every term using a pair of elements, one that denotes the original

31

term and the second that denotes whether the term is L or not, depending on whether it is
equal to ¢. It is easy to transform the formula now to one that is on the original domain D

(which in our case integers) itself.

2.5.1 Expression Synthesizer

Given an input p, the expression synthesizer has to find an expression that works for p.
Our implementation deviates slightly from the general framework.

In the first phase, it checks whether one of the existing expressions in the global set E
already works for p. This is done by calling the label finder (as in Phase 3). If none of the
expressions in ' work for p, the expression synthesizer proceeds to the second phase, where
it generates a new synthesis problem with specification V. 1] 5(f , @) according to Phase 2 of
Section 2.3, whose solutions are expressions that work for p. It solves this synthesis problem
using a simple CEGIS-style algorithm, which we sketch next.

Let V. ¢(f,Z) be a specification with a function symbol f: Z" — Z, which is to be

synthesized, and universally quantified variables & = (z1,...,2,,). Our algorithm synthesizes
affine expressions of the form (>, a; - y;) + b where 1, ..., y, are integer variables, a; € Z
fori € {1,...,n}, and b € Z. The algorithm consists of two components, a synthesizer and a

verifier, which implement the CEGIS principle in a similar but simpler manner as our general
framework. Roughly speaking, the synthesizer maintains an (initially empty) set V' C Z™ of
valuations of the variables ¥ and constructs an expression H for the function f that satisfies
¥ at least for each valuation in V' (as opposed to all possible valuations). Then, it hands this
expression over to the verifier. The task of the verifier is to check whether H satisfies the
specification. If this is the case, the algorithm has identified a correct expression, returns
it, and terminates. If this not the case, the verifier extracts a particular valuation of the
variables ¥ for which the specification is violated and hands it over to the synthesizer. The
synthesizer adds this valuation to V', and the algorithm iterates. The synthesizer and verifier

are implemented as follows.

Synthesizer The synthesizer maintains a finite set V' C Z™ of valuations of the universally
quantified variables & and constructs expressions for the synthesis function f that satisfies
1 at least on all valuations in V. To this end, the synthesizer first constructs a template
expression t(d, b, 7) of the form described above, but where @ = (a4, ...,a,), and b are now

variables (note that this expression is not linear due to the terms a; - y;). Then, it constructs

32

the formula

p(a,b)y = N\ v(t/f,v/T). (2.34)

vev
Note that ¢ is a formula in linear integer arithmetic since all occurrences of variables y; have
been replaced with integers values. Finally, the algorithm uses an SMT solver to obtain
valuations of @ and b that satisfy ¢; note that ¢ is guaranteed to be satisfiable since we
use the synthesizer in a special setting, namely to synthesize expressions for a single-point
definable specification. The synthesizer substitutes the satisfying assignment for @ and b in

the template ¢ and returns the resulting expression H.

Verifier Given an expression H conjectured by the synthesizer, the verifier has to check
whether

p = ¢(H/f,T) (2.35)

is valid. To this end, the verifier turns this validation problem into a satisfiability problem
by querying an SMT solver whether —¢ is satisfiable. If -y is satisfiable, then the verifier
extracts a satisfying assignment ¢ for the universal quantified variables and returns v to the
synthesizer. If - is unsatisfiable, an expression satisfying the specification has been found

and the synthesizing algorithm returns it.

2.5.1.1 Further Heuristics

Our implementation for synthesizing expressions for linear arithmetic constraints has
several other heuristics that we briefly describe.

First, some technical aspects of the counterexample finder and the label finder are im-
plemented a bit differently than explained above. We use array theories and uninterpreted
functions to extract the counterexample point from the specification and the hypothesis
(instead of using the ISOLATE transformer), and to check if a point works for an expression.

The counterexample finder prioritizes data-points that have a single classification, and
returns multiple counterexamples in each round, to facilitate better learning.

We also maintain an initial set of enumerated expressions, and dovetail through them lazily
before invoking the expression synthesizer. These initial expressions has coefficients between
—1 and 1 for all the variables. If none of these expression work for the counterexample point,
the expression synthesizer is invoked.

There are also phases in our algorithm where, when examining an enumerated expression,
we would ask a constraint solver whether this expression would work for any input (not

necessarily the counterexample input) and if possible, add the new point and the expression to

33

the sample. Further, when we do find a unique expression that works for the counterexample,
we ask the constraint solver for more points for which this expression would work, and add
them as extra samples. When multiple expressions work for a point, we strive to find another
point for which only one of them works (in order to avoid considering spurious expressions)
and add them to the sample.

The expression synthesizer also uses a heuristic motivated by a geometric intuition. We
would expect the correct expression for a point to work also on points neighboring it (unless
it lies close to the boundary of a piece-wise region). In order to synthesize a n-dimension
expression, we need at least (n+1) points that lie on that plane. If (y1,v2,...y,) is a point,
then it is highly likely that the “correct” expression for the point would also work for its
immediate neighboring points in each dimension, namely (y; + 1,92...4n), (y1,y2+ 1...yn),
oo (Y1, 92, - -, yn +1). We constrain the SMT solver to synthesize a n-dimensional expression
with integer coefficients that works for all these (n+1) points. If no such expression exists,

then we resort to synthesizing an expression only for the counterexample.

2.5.2 Expression Synthesizer for Unique Specifications

In an earlier work [85], we designed an expression synthesizer module for the restricted
case of a unique specification where the specification has only one unique solution. As the
function to synthesize is unique, it is not hard to see that each counterexample can only be
labeled with one expression, instead of multiple expressions in the general case. In addition
to synthesizing expressions, the synthesizer module also labels the counterexamples with
the expression that works for it. The framework globally maintains a set P consisting of all
the counterexamples found across rounds, where each counterexample is an input-output
pair (p,v) such that f(p) = v