
c© 2019 Shambwaditya Saha



LEARNING FRAMEWORKS FOR PROGRAM SYNTHESIS

BY

SHAMBWADITYA SAHA

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Madhusudan Parthasarathy, Chair
Professor Mahesh Viswanathan
Professor Tao Xie
Dr. Rishabh Singh, Google Brain



ABSTRACT

The field of synthesis is seeing a renaissance in recent years, where the task is to auto-
matically synthesize small expressions or programs. One of the most prominent techniques
counterexample guided inductive synthesis (CEGIS), uses a teacher(verification oracle) and
a learner(learning algorithm) to learn such expressions across multiple rounds. A learning
framework is a sub-framework of CEGIS where the learner is entirely agnostic of the spec-
ification and learns only from input-output examples provided by the teacher as natural
notions of counterexamples. Thus, learning frameworks for synthesis have three components:
the verification oracle, the notion of a natural counterexample, and the learning algorithm.
The goals of this thesis are to study learning frameworks for synthesis, developing new

and more efficient algorithms for learning, exploring new classes of counterexamples, and
finding applications of synthesis to new domains. Specifically, by co-designing the notion of
counterexamples, the learning algorithms, the verification oracle, and taking into account
the aspects of the application domain, we achieved more effective program synthesis. We
discuss learning frameworks for four different applications, illustrating the co-design of
oracle-counterexample-learner for each of them.
For the first application, we developed a general purpose SyGuS solver for piece-wise

functions, using multiple learners to learn parts of the expression modularly and then
compose them together to get the final expression. Second, we considered the application of
automatic verification, where we synthesized inductive invariants using incomplete verification
oracles. We also propose a novel property driven ICE learning algorithm to learn conjunctive
inductive invariants. We considered specification mining for the next two applications, where
we learned preconditions and postconditions of a method. Instead of using a verification
engine as the oracle, which is not efficient, does not scale, and needs loop invariants, we
bypassed all these limitations by using a test generator as the oracle.

ii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 COMPOSITIONAL SYNTHESIS OF PIECE-WISE FUNCTIONS
BY LEARNING CLASSIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Synthesis Problem and Single-Point Refutable Specifications . . . . . . . 14
2.3 A General Synthesis Framework by Learning Classifiers . . . . . . . . . . . . 23
2.4 Multi-Label Decision Tree Classifiers . . . . . . . . . . . . . . . . . . . . . . 27
2.5 A Synthesis Engine for Linear Integer Arithmetic . . . . . . . . . . . . . . . 31
2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CHAPTER 3 INVARIANT SYNTHESIS FOR INCOMPLETE VERIFICATION
ENGINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 An Invariant Synthesis Framework for Incomplete Verification Engines . . . 45
3.3 Learning Invariants that Aid Natural Proofs for Heap Reasoning . . . . . . . 58
3.4 Learning Invariants in the Presence of Bounded Quantifier Instantiation . . . 63
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 4 SORCAR: PROPERTY-DRIVEN ALGORITHMS FOR LEARN-
ING CONJUNCTIVE INVARIANTS . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 The Sorcar Horn-ICE Learning Algorithm . . . . . . . . . . . . . . . . . . 76
4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 5 LEARNING PRECONDITIONS AND POSTCONDITIONS USING
TEST GENERATORS AS ORACLES . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Synthesizing Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Synthesizing Conjunctive Postconditions . . . . . . . . . . . . . . . . . . . . 116
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

iii



CHAPTER 1: INTRODUCTION

The field of synthesis is a classical discipline in formal methods that is seeing a renaissance,
mainly due to a variety of new techniques [1, 2, 3, 4, 5] to automatically synthesize small
expressions or programs, given input-output examples [6, 7] or correctness specifications [1, 8].
Such expressions are useful in niche application domains, including end-user programming for
data manipulation such as the FlashFill feature of Microsoft Excel [7, 9, 10, 11, 12, 13, 14, 15],
filling holes in program sketches [2, 3], program transformations [16, 17], computer-aided edu-
cation [18, 19, 20, 21, 22, 23], synthesizing network configurations and migrations [24, 25, 26],
optimizing code generated by compilers using Superoptimization [26, 27, 28, 29], concur-
rent programming [30, 31, 32], program repair [19, 22, 23, 33, 34, 35, 36], code sugges-
tion [37, 38, 39, 40, 41], distributed transition systems [42, 43], probabilistic modelling [44], as
well as synthesizing annotations such as invariants [45, 46, 47], and pre/post conditions [48].
The field of program synthesis has emerged as a thriving area in programming languages and
formal methods (see the articles [4, 5, 49]).
In order to introduce the reader to a simple model of program synthesis, let us consider

the following problem. Let us start with a specification of how an output relates to a tuple of
inputs, and set the goal of synthesis to automatically synthesize an expression or a program
implementation that realizes the given specification. More formally, let the synthesis problem
be stated using a specification ∀~x. ψ(f, ~x ), where ψ is a quantifier-free first order logic (that
could be over a combination of interpreted theories) formula that uses a special uninterpreted
function symbol f . The goal of synthesis is then to find a concrete expression e for the
function f , that satisfies the specification, i.e., ∀~x. ψ(e/f, ~x ) is valid. We hence want the
concrete definition e to satisfy the specification for all inputs. Note that the specification
can, of course, describe input-output examples as well, but in this case, we would also want
the expression to generalize well (one way to formalize generalization would be to insist that
e be a simple expression, in the style of an Occam’s razor).
In recent synthesis settings, in addition to the (correctness) specification, a syntactic

template for the desired expression is also provided. This syntactic constraint makes the
problem more tractable by limiting the search space of the solution, and also giving the
user fine-grained control over the potential solutions using a combination of syntactic and
semantic constraints. The syntax guided synthesis (SyGuS) [1, 50, 51] problem, presents a
standard input format to describe such problems, very similar to SMT-LIB [52], the common
interchange format used in SMT solvers. The SyGuS format thus provides a way to formalize
the syntactic guidance under a general framework based on logics and grammars.

1



Many algorithmic approaches have been proposed over the years to solve the synthesis
problem. Classically, deductive synthesis [53, 54] derives the program from the constructive
proof of a theorem using logical inferences and constraint solving. Another technique is to fix
a template structure syntax for the expression f , and formulate the synthesis problem as
a formula in first order logic of the form ∃~t ∀~x. ψ(~t, ~x), where ~t encodes the instantiation
of the template and ψ interprets the instantiated template using its semantics. Quantifier
elimination methods can then be used to reduce this problem to quantifier free satisfiability [5]
(also see recent work by us on such elimination algorithms [55]).

Alternatively, inductive synthesis [56, 57, 58] techniques learn from input-output examples,
generalizing from them to synthesize program expressions. An input-output pair consist of
concrete values that characterize the behavior of the function to synthesize, i.e., when the
function is called with each input, its return value is the corresponding output. Learning
from input-output example closely resembles problems in the field of machine learning [59],
especially the subfield of inductive programming, which has a long tradition in solving
this problem using inductive methods [60, 61]. Machine learning, which is the field of
learning algorithms that builds models from training data, is a rich field that encompasses
algorithms for several problems, including classification, regression, and clustering [59]. The
template-based approach discussed earlier, when used with input-output examples, has the
added benefit that we no longer need the universal quantification, and the formula becomes
quantifier-free. This is so because instead of quantifying over all inputs, the specification needs
to hold only on the provided input-output examples, and hence the universal quantification
can be replaced by a conjunctive formula.

Counter-example guided inductive synthesis (CEGIS): Turning to synthesis from
a more general specification than input-output examples, a new technique called counter-
example guided inductive synthesis (CEGIS) has emerged [1, 2, 3, 62]. The CEGIS ap-
proach [3] for program/expression synthesis advocates pairing inductive learning algorithms
with a verification oracle (see Figure 1.1). The idea is to have the learning algorithm propose
hypotheses expression to samples given by the verification oracle, in rounds of interaction,
until it finds an expression that the oracle can verify to satisfy the specification. In each
round, the verification oracle, when it finds the hypothesized expression to not satisfy the
specification, produces counterexamples that have concrete values and show why the proposed
hypothesis is wrong. A majority of the current synthesis approaches rely on counterexample
guided inductive synthesis [3, 45, 46, 63].
The CEGIS framework [1] for the FO specifications of the form ∀~x. ψ(f, ~x) that we

fixed, works as follows. The framework maintains a global set of counterexamples, which is

2



Learner
(learning algorithm)

Teacher
(verification oracle)

Hypothesis expression H

Counterexamples

Figure 1.1: Counter-Example Guided Inductive Synthesis (CEGIS) framework structure.

initially set to be empty. The learning takes place across multiple rounds, where, in each
round, the learner learns inductively from this global set of counterexamples, and proposes a
hypothesis H. The verification oracle then checks the validity of the hypothesis H against
the specification ∀~x. ψ(f, ~x). It does so by checking if the formula obtained by substituting
the hypothesis H for f , i.e. ∀~x. ψ(H/f, ~x), is valid. If this is the case, then learning stops
and the hypothesis H is declared as the solution. Otherwise, the verification oracle proposes
as counterexample a concrete valuation of ~x (using a satisfying model of the negation of the
formula), and adds it to the global set of counterexamples. The learner then proceeds to
the next round on the new set of counterexamples. Notice that though the valuation of ~x
is concrete, the learner needs to know the specification in order to understand what this
counterexample means.

Learning Frameworks for Synthesis: Though all the synthesis techniques mentioned
in this thesis is based on CEGIS, we would like to differentiate it from the paradigm of
"learning". A learning framework can be seen as a sub-framework of CEGIS where the learner
is entirely agnostic of the specification and learns only from input-output examples. Note
that the general CEGIS approach for FO specifications described is not of this form, as the
learner needs to know the specification to understand what the counterexample means.
In learning frameworks, we would like the learner to be agnostic of the specification and

also learn from a natural notion of samples. For example, when learning a predicate over ~i, a
natural notion of a sample would be valuation of~i with a +/- label. When learning functions,
a natural notion of a sample is input-output examples for the function being synthesized.
In this thesis, we will explore learning frameworks for synthesis, and in particular design

several frameworks where the oracle can be designed to give natural samples to a specification-
agnostic learner.

3



1.1 THESIS WORK

The synthesis problem, viewed through the learning lens, naturally poses synthesis as a
learning problem from concrete samples. However, the counterexamples that the verification
oracles provide as witnesses for showing a hypothesis is incorrect, cannot always be seen as
natural samples that can be interpreted by a learner that does not know the specification.
Furthermore, the samples/counterexamples that the oracle can provide greatly varies according
to the synthesis application.
The goals of this thesis are to study learning frameworks for synthesis, developing new

and more efficient algorithms for learning, exploring new classes of counterexamples, and
finding applications of synthesis to new domains.

The thesis statement is:

In learning for synthesis, co-designing the notion of counterexamples, the
learning algorithms, the verification oracle, and taking into account the aspects
of the application domain leads to more effective program synthesis.

In learning frameworks for synthesis, frameworks have three components: (1) the verification
oracle, (2) the notion of a natural counterexample, and (3) the learning algorithm. All these
three components required to be co-designed with the particular aspects of the application
domain for effective synthesis.

In the rest of this chapter, we discuss several learning frameworks for different applications,
illustrating the co-design of oracle-counterexample-learner for each of them. Table 1.1
summarizes these results. The later chapters describe each such framework in detail.

1.1.1 A SyGuS Solver for Synthesizing Piece-wise Functions and an Arithmetic
Instantiation

In Chapter 2, we look into the application of building a general purpose SyGuS solver
or synthesis engine to synthesize piece-wise functions (functions that split the domain into
regions and apply simpler functions to each region) from both logical specifications as well as
input-output examples. We propose a learning framework to build such an engine, where
we can use multiple learners to learn simple functions for regions, use learners to synthesize
predicates defining regions, and then compose them using a classifier.

The most natural class of counterexamples that can facilitate such learning are those that

4



Applications Framework Components

Oracle Counterexamples Learner

SyGuS:
Piece-wise
Functions

SMT Solvers Input-Output
Examples

Compositional Expr.
Synth. & Multi-label

Classification

Verification:
Inductive
Invariants

Incomplete
Verification Oracle

Non-Provability
Information for

Validity of Invariants

ICE Learners
including Sorcar

Specification
Mining:

Preconditions
Test Generator

Valid and Invalid
Abstractions of
Input States

Conflict Resolver +
Classification
Algorithms

Specification
Mining:

Postconditions
Test Generator

Positively Labeled
Abstractions of Input
and Output States

Learner for
Conjunctive

Functional Concepts

Table 1.1: The different framework components of the applications we explored in this thesis.

precisely identify inputs for the synthesized function on which a given hypothesis is wrong.
Thus the requirement on the learners fixes the class of counterexamples we consider. However,
it turns out that not all synthesis specifications are such that such kinds of counterexamples
can be found.
We develop a theory of single-point definable specifications, a semantic property, whose

definition ensures such counterexamples always exist, and a subclass of single-point refutable
specifications, a syntactic property, that reduces finding such counterexample to satisfiability
problems over the underlying quantifier-free logic (which is often decidable). Our framework
works robustly for the class of single-point refutable specifications and we thus use SMT
solvers as the verification oracle.
We instantiate our framework to build a SyGuS solver for the class of conditional linear

integer arithmetic (CLIA) expressions. Our implementation uses an SMT solver as the
verification oracle, and learns the expression by combining leaf expression synthesis using
constraint-solving with predicate synthesis using enumeration, and tying them together
using a custom decision tree algorithm as the multi-label classifier. We demonstrate that
this compositional approach is competitive compared to traditional synthesis engines on
a set of CLIA specifications from the 2015 and 2016 SyGuS competitions [1, 51, 64]. Our
compositional learning technique inspired the SyGuS solver EUSolver [65], which was able

5



to synthesize piece-wise functions from the ICFP benchmarks [66] (which are input-output
specifications on bit-vectors) for the first time in the SyGuS competitions.

To summarize, in this framework: Specifications are either input-output examples or single-
point refutable specifications. Counterexamples are inputs on which a hypothesis is incorrect.
The learner is a compositional learner that combines a synthesis engine that synthesizes
expressions for subsets of inputs in various regions, an enumerative synthesis algorithm for
synthesizing boundaries between regions, and a decision-tree based multi-labeled classifier for
learning the final formula.

1.1.2 Synthesizing Inductive Invariants for Program Verification with Incomplete Logic
Engines

In Chapter 3, we look into the application of deductive program verification, where we
facilitate automatic verification by synthesizing inductive invariants. Once invariants are
found, program verification reduces to checking validity of verification conditions (expressed
in pure logic). Though prior learning-based counterexample guided inductive synthesis
(CEGIS) methods have been proposed [45, 46, 47, 67], we look into the situation where the
validity of the verification conditions is undecidable. In a learning-based synthesis framework,
the verification oracle is hence incomplete i.e., the oracle resorts to sound but incomplete
heuristics to check the validity of the verification conditions and hence cannot generate a
concrete model when verification conditions are not provable.
The framework we propose in this chapter thus assumes that we have an incomplete

verification oracle. In this setting, we extract certain non-provability information from the
verification oracle as counterexamples when the conjectured invariant results in verification
conditions that cannot be proven. The non-provability information is a Boolean formula on
a fixed set of predicates that generalizes the reason for non-provability, hence pruning the
space of future conjectured predicates.

The notion of the counterexamples being non-provability information dictates the learning
algorithm we need to design to learn from such a sample of formulas. We reduce the formula-
driven problem of learning expressions from non-provability information to the data-driven
ICE model [45]. This reduction thus allows us to use a host of existing ICE learning algorithms
and results in a robust invariant synthesis framework that guarantees to synthesize a provable
invariant if one exists.
We evaluate our invariant synthesis framework to automatically verify two classes of

programs. First, programs that dynamically manipulate the heap (singly and doubly linked
lists, sorted lists, balanced and sorted trees). We use the natural proof verification engines [68]

6



as the oracle against a undecidable separation logic called Dryad [69], that combine properties
of structure, separation, arithmetic, and data. Second, verification of programs against
specifications with universal quantification, which renders verification undecidable in general.
In both the cases we are able to automatically verify the programs efficiently.
To summarize, in this framework: The application is inductive invariant synthesis. We

consider two verification oracles: one oracle for heap verification using natural proofs and
the other a quantifier-instantiation based logic solver for annotations that involve universally
quantified formulas. In both cases, the verification oracle is sound but not complete. The
class of counterexamples encode non-provability information of particular predicates in the
postcondition of Hoare-triples. The learning algorithm needs to propose hypotheses that
include only provable concepts. We implement this using a reduction to ICE-learning of
Boolean formulas.

1.1.3 Property-driven synthesis of conjunctive inductive invariants: The Sorcar
ICE-Learning Algorithm

In Chapter 4, we present a novel ICE learning algorithm to learn conjunctive inductive
invariants over a fixed finite set of predicates P . Houdini [70] is an existing learner to learn
conjunctive inductive invariants, and synthesizes the tightest inductive invariant. Conse-
quently, it can ignore the property to be proven about the program. However, the tightest
invariant can be quite complex (have many conjuncts) and hard to synthesize.
We present Sorcar, a property driven learning algorithm for conjunctive inductive

invariants and performs better than existing Houdini based tools on certain classes of
benchmarks. Intuitively, Sorcar grows slowly a set of relevant predicates R ⊆ P in each
round and proposes the tightest conjunctive invariant over R. It guarantees convergence
to a conjunctive invariant (if one exists over P ) in 2|P | rounds of communication with any
verification oracle.

We implement Sorcar on top of the Boogie program verifier [71]. We evaluate its
efficiency on two domains of benchmarks. The first is the class of programs consisting of GPU
programs handled by the tool GPUVerify [72, 73] to prove data race freedom. The second
class of programs dynamically update heaps against specifications in separation logics [74].
We compared Sorcar to the current state-of-the-art tools for these programs, which use
the Houdini algorithm. Though Sorcar did not work more efficiently on every program,
however, our empirical evaluation shows that it is overall more competitive than Houdini.
In general, Sorcar produces much smaller invariants, worked more efficiently overall in
verifying these programs, and verified a larger number of programs than Houdini.

7



To summarize: The Sorcar learning algorithm is a general conjunctive ICE learning
algorithm that can be used in many program verification algorithms. However, we use it
in two settings: one for GPUVerify programs and the other where validation of verification
conditions is incomplete (heap verification). The notion of counterexamples are either concrete
states or non-provability information, respectively.

1.1.4 Specification Mining: Preconditions and Postconditions for Methods

In Chapter 5, we consider the problem of synthesizing contracts, where we propose
frameworks to synthesize precondition and postcondition of a method in a class of a program
in an object-oriented language. In this context, the natural oracle to use would be a verification
engine that verifies programs (with loops/recursion). However, verification engines that can
do completely automated program verification are not often effective or scalable. We hence
consider using test generators as teaching oracles.

Given a program annotated with preconditions and assertions, the test generator creates a
valid object state (using object modifying methods) and concrete input parameters of the
method that satisfy the precondition. Furthermore, several test generators are guided by the
assertions, and try to generate inputs that violate them.

Synthesizing Preconditions:

In the learning framework we develop for synthesizing preconditions, we use as counterex-
amples abstractions of the input states, which consists of the primitive type inputs, and the
valuations of a certain set of observer methods of the non-primitive-type input objects.

Each input state (and similarly for counterexample) created by the test generator, can
be either valid: execute successfully and terminate, or invalid: encounter an uncaught
exception, or result in an assertion violation. Note that the predicates used in the logic for
expressing preconditions and the observer methods for deriving properties of objects, create
abstractions of input states. Abstractions of invalid input states must be excluded by the
precondition. However, abstractions of valid input states need not necessarily be included in
the precondition, as there could be input states with the same abstraction but are invalid.

We define the problem of precondition synthesis using a notion of ideal preconditions. An
ideal precondition for a method with respect to a test generator is a precondition which
satisfies two properties. First, safety: the test generator should not be able to find any invalid
input state allowed by the precondition. Second is maximality: the precondition should
include as many valid input states as possible. More precisely, it can exclude an abstraction

8



of input states only if there exists some invalid input state that has this abstraction. The
maximality requirement intuitively captures the desire to synthesize weakest (most liberal)
preconditions.

In our learning framework, counterexamples are positively and negatively labeled abstrac-
tion of input states. The meaning of the counterexample is as follows. The learner needs
to find a formula in a fixed logic L that (a) excludes all negatively labeled inputs, and (b)
includes all positively labeled inputs i unless there is another sample i′ that is negatively
labeled and is indistinguishable from i by any formula in L.

The learning algorithms we propose for ideal preconditions first resolve all conflicts (conflicts
are pairs of samples labeled positive and negative that are indistinguishable by the logic L) by
reclassifying them as negative. A classification algorithm is then used to learn a hypothesis
precondition from the conflict resolved samples.

We implement a prototype of our framework in a tool called Proviso using a learner based
on the ID3 classification algorithm [75], and Pex [76] as the test generator. We evaluate
Proviso on two important tasks in specification inference: runtime-failure prevention and
conditional-commutativity inference [77]. The former problem asks to synthesize preconditions
that avoid runtime exceptions of a single method. The latter problem asks, given two methods,
find a precondition that ensures that the two methods commute, when called in succession.
Proviso takes on average ∼740 seconds per method/method pair to synthesize preconditions.
Moreover, 91% of the preconditions synthesized by Proviso are safe, while 77% of the
preconditions are both safe and maximal.
To summarize, our framework for precondition synthesis has the following features. The
application is synthesizing precondition of a method of a class in an object oriented program.
The verification oracle is a test generator, which is inherently incomplete hence introduces
conflicting counterexamples. The counterexamples are valid and invalid abstractions of input
states. We formulate the synthesis problem using the notion of an ideal precondition with
respect to the oracle and a particular logic L for stating preconditions; this implicitly gives the
meaning of what counterexamples mean. The learning algorithm to find an ideal precondition
first resolves all conflicts in the sample and then uses a classification algorithm that does not
make any mistakes.

Synthesizing Conjunctive Postconditions

We finally propose a framework to synthesize conjunctive postconditions of a method using
a test generator as the oracle. We assume that the method is already annotated with a
precondition, which prevents all exception failures (this can be done using the precondition

9



synthesis mentioned above). Synthesized postconditions need to be strong, and ideally the
strongest postcondition expressible in a given logic.
In a learning framework, the test generator can only provide pairs of feasible input-

output states (where input states satisfy the precondition). Consequently, given a hypothesis
postcondition, a test generator can refute that the postcondition is correct by giving executions
that end in states that are not satisfied by the postcondition. However, it cannot refute
the assertion that the postcondition is the strongest one. In terms of counterexamples, we
can think of the test generator as being able to only provide positively labeled pairs of
abstractions of input and output states.

We propose to learn postconditions in a logic that consists of conjunctions of (a) predicates
over a fixed set P and (b) an equality expression that defines an output as a function of the
input. The predicates P and the parameters for the functions synthesized are based on input
parameters and abstractions of objects using observer methods.
The above logic facilitates learning tight concepts (as the above logic is closed under

conjunction). We synthesize functional relationships between input and output using a
SyGuS solver. We then seed this as equality predicates and add them to P , and then use the
elimination algorithm [78] to learn the semantically smallest conjunctive formula over the
predicates that includes all the positive counterexamples.

We implement a prototype of our framework in a tool called Precis with Pex [76] as the
test generator and the elimination algorithm as the learner. To synthesize equality predicates,
we used the enumerative solver [65] from the SyGuS competition [1]. We evaluated our
framework on datastructure methods from two open-source projects QuickGraph and the
.NET Core. Precis was able to synthesize postconditions of reasonable size (average of 4.6
conjuncts per method), very efficiently taking an average time of 200s per method.

In summary, our learning framework for postcondition synthesis has the following features.
The application is to learn a strong conjunctive postcondition of a method that is already
annotated with a precondition. The counterexamples in this framework are only positive.
The oracle is a test generator, and counterexamples are abstractions of pairs of input and
output states that are always classified positively. The learning algorithm first synthesizes
new predicates using a SyGuS solver and then uses the elimination algorithm to learn the
tightest conjunctive postcondition.

These learning frameworks and the experimental results argue my thesis statement, that
co-designing the notion of counterexamples, the learning algorithms, the verification oracle,
and taking into account the aspects of the application domain leads to more effective program
synthesis.

10



CHAPTER 2: COMPOSITIONAL SYNTHESIS OF PIECE-WISE
FUNCTIONS BY LEARNING CLASSIFIERS

In this chapter, we propose a framework to build a general-purpose synthesis engine to
synthesize piece-wise functions (functions that split the domain into regions and apply simpler
functions to each region) from logical specifications or input-output examples.
In this framework, instead of learning the whole expression at once using one learner, we

use multiple learners to learn different parts of the expression modularly. We use a learner
for simple functions for fixed concrete inputs and another learner for predicates that can be
used to define regions. We then join these expressions into one expression, using a multi-label
classifier that does not make any mistakes and is biased towards learning smaller expressions,
thus achieving generalization.
For logical specifications, the most natural class of counterexamples that can facilitate

learning are those that precisely identify inputs on which a given hypothesis is wrong. However,
it turns out that not all synthesis specifications are such that such kinds of counterexamples
can be found.
We develop a theory of single-point definable specifications, a semantic property, whose

definition ensures such counterexamples always exist, and a subclass of single-point refutable
specifications, a syntactic property, that reduce finding such counterexample to satisfiability
problems over the underlying quantifier-free logic (which is decidable). Our framework works
robustly for the class of single-point refutable specifications and we thus use SMT solvers as
the verification oracle.

In particular, in this chapter:

• Specifications are either input-output examples or single-point refutable specifications.

• Counterexamples are inputs on which a hypothesis is incorrect.

• The learner is a compositional learner that combines a synthesis engine that synthesizes
expressions for a subset of inputs in a region, an enumerative synthesis algorithm for
synthesizing boundaries between regions, and and a decision-tree based multi-labeled
classifier for learning the final overall formula.

2.1 INTRODUCTION

We present a general technique that uses the CEGIS framework for synthesizing expressions,
that can learn piece-wise functions. A piece-wise function is a function that partitions the

11



input domain into a finite set of regions, and then maps each region using a simpler class of
functions. In this setup, we synthesize modularly with the help of two other synthesis engines,
one for synthesizing expressions for single inputs and another for synthesizing predicates
that separate concrete inputs from each other. The technique is general in the sense that
it is independent of the logic used to write specifications and the logic used to express the
synthesized expressions. The counterexample guided synthesis proceeds in the following
fashion:

• In every round, the learner proposes a piece-wise function H for f , and the verification
oracle checks whether it satisfies the specification. If not, it returns one input ~p on
which H is incorrect (Returning such a counterexample is nontrivial).

• We show that we can now use an expression synthesizer for the single input ~p which
synthesizes an expression that maps ~p to a correct value. This expression synthesizer
will depend on the underlying theory of basic expressions, and we can use any synthesis
algorithm that performs this task.

• Once we have the new expression, we compute for every counterexample input obtained
thus far the set of basic expressions synthesized so far that work correctly for these
inputs. This results in a set of samples, where each sample is of the form (~p, Z), where
~p is a concrete input and Z is the set of basic expressions that are correct for ~p. The
problem we need to solve now can be seen as a multi-label classification problem— that
of finding a mapping from every input to an expression that is consistent with the set
of samples.

• Since we want a classification that is a piece-wise function that divides the input domains
into regions, and since the predicates needed to define regions can be arbitrarily complex
and depend on the semantics of the underlying logical theory, we require a predicate
synthesizer that synthesizes predicates that can separate concrete inputs with disjoint
sets of labels. Once we have such a set of predicates, we are equipped with an adequate
number of regions to find a piece-wise function.

• The final phase uses classification learning to generalize the samples to a function from
all inputs to basic expressions. The learning should be biased towards finding simple
functions, finding few regions, or minimizing the Boolean expression that describes the
piece-wise function.

The framework above requires many components, in addition to the expression synthesizer

12



and predicate synthesizer. First, given a hypothesis function H and a specification ∀~x. ψ(f, ~x),
we need to find a concrete counter-example input on which H is wrong.

It turns out that there may be no such input point for some specifications and even if
there was, finding one may be hard. In current standard CEGIS approaches [1, 3], when H
and ∀~x. ψ(f, ~x) are presented, the teacher simply returns a concrete value of ~x for which
¬ψ(H/f, ~x) is satisfied. We emphasize that such valuations for the universally quantified
variables cannot be interpreted as inputs on which H is incorrect, and hence cannot be
used with any learner that learns from input-output examples (including machine learning
algorithms).
We develop a theory of single-point definable specifications, a semantic property, whose

definition ensures such counterexample inputs always exist, and a subclass of single-point
refutable specifications, a syntactic property, that reduce finding such counterexample inputs
to satisfiability problems over the underlying quantifier-free logic (which is decidable). The
framework of single-point refutable specifications and the counterexample input generation
procedures we build for them is crucial in order to be able to use classifiers to synthesize
expressions.
Our framework works robustly for the class of single-point refutable specifications, and

we show how to extract concrete counterexamples, how to automatically synthesize a new
specification tailored for any input ~p to be given to the expression synthesizer, and how to
evaluate whether particular expressions work for particular inputs.

The classifier learning algorithm can be any learning algorithm for multi-label classification,
which is the problem of learning a predictive model (i.e., a classifier) from samples that are
associated with multiple labels (preferably with the learning bias as to learn small trees).
However, the classifier learning algorithm must ensure that the learned classifier is consistent
with the given samples (i.e., it is not allowed to misclassify datapoints in the training set).
Machine-learning algorithms more often than not make mistakes and are not consistent
with the sample, often because they want to generalize assuming that the sample is noisy.
We proposed an adaptation of decision-tree learning to multi-label learning that produces
classifiers that are consistent with the sample. We also explore a variety of statistical measures
used within the decision-tree learning algorithm to bias the learning towards smaller trees in
the presence of multi-labeled samples. The resulting decision-tree learning algorithms form
one class of classifier learning algorithms that can be used to synthesize piece-wise functions
over any theory that works using our framework.

We instantiated the framework to build an efficient synthesizer of piece-wise linear integer
arithmetic functions for specifications given in the theory of linear integer arithmetic. We
implement the components of the framework for single-point refutable functions: to synthesize

13



input counterexamples, to reformulate the synthesis problem for a single input, and to evaluate
whether an expression works correctly for any input. These problems are reduced to the
satisfiability of the underlying quantifier-free theory of linear integer arithmetic, which is
decidable using SMT solvers. The expression-synthesizer for single inputs is performed using
an inner CEGIS-based engine using a constraint solver.

We also looked into the problem of synthesizing the expressions for the restricted settings
of a unique specification where the specification permits only one solution. Assuming the
function to synthesize f is of arity n, then the problem of finding the expressions that satisfy
all the counterexamples can be viewed as the problem finding planes in a (n+1)-dimensional
space where the space describes the input-output behavior of the function f . The synthesizer
learns from all previously found counterexamples, where each counterexample is an input-
output pair and can be viewed as a point in this (n+1)-dimensional space. We would
essentially like to find a small set of planes, that include all the given points in this space.
We solve this problem using a greedy algorithm that uses geometric techniques to determine
coplanarity between points in this (n+1)-dimensional space.
The predicate synthesizer is instantiated using an enumerative synthesis algorithm. We

use a straightforward modification of Quinlan’s C 5.0 algorithm [75, 79] to solve the disjoint
multi-label learning problem, and experimented with the different statistical measures to
bias the learning towards smaller trees. The resulting solver works extremely well on a
large class of conditional linear integer arithmetic benchmarks drawn from the SyGuS 2015
synthesis competition [51] and fared significantly better than all the traditional SyGuS solvers
(enumerative, stochastic, and symbolic constraint-based solvers).

2.2 THE SYNTHESIS PROBLEM AND SINGLE-POINT REFUTABLE
SPECIFICATIONS

The synthesis problem we tackle in this chapter is that of finding a function f that satisfies
a logical specification of the form ∀~x. ψ(f, ~x), where ψ is a quantifier-free first-order formula
over a logic with fixed interpretations of constants, functions, and relations (except for f).
Further, we will assume that the quantifier-free fragment of this logic admits a decidable
satisfiability problem and furthermore, effective procedures for producing a model that maps
the variables to the domain of the logic are available. These effective procedures are required
in order to generate counterexamples while performing synthesis.

For the rest of the chapter, let f be a function symbol with arity n representing the target
function that is to be synthesized. The specification logic is a formula in first-order logic,
over an arbitrary set of function symbols F , (including a special symbol f), constants C, and

14



relations/predicates P , all of which with fixed interpretations, except for f . We will assume
that the logic is interpreted over a countable universe D and, further, and that there is a
constant symbol for every element in D. For technical reasons, we assume that negation is
pushed into atomic predicates.
The specification for synthesis is a formula of the form ∀~x. ψ(f, ~x) where ψ is a formula

expressed in the following grammar (where g ∈ F , c ∈ C, and P ∈ P):

Term t ::− x | c | f(t1, . . . , tn) | g(~t ) (2.1)

Formula ϕ ::− P (~t ) | ¬P (~t ) | ϕ ∨ ϕ | ϕ ∧ ϕ (2.2)

We will assume that equality is a relation in the logic, with the standard model-theoretic
interpretation.
The synthesis problem is to find, given a specification ∀~x. ψ(f, ~x), a definition for the

function f in a particular syntax that satisfies the specification. More formally, given a
subset of function symbols F̂ ⊆ F (excluding f) and a subset of constants Ĉ and a subset of
relation/predicate symbols P̂ ⊆ P, the task is to find an expression e for f that is a term
with free variables y1, . . . , yn adhering to the following syntax (where ĝ ∈ F̂ , ĉ ∈ Ĉ, P̂ ∈ P̂)

Expr e ::− ĉ | yi | ĝ(~t ) | ite(P̂ (~t ), e, e), (2.3)

such that e satisfies the specification (i.e., ∀~x. ψ(e/f, ~x ) is valid).

2.2.1 Single-Point Definable Specifications

In order to be able to define a general CEGIS algorithm for synthesizing expressions for f
based on learning classifiers, as described in Section 2.1, we need to be able to refute any
hypothesis H that does not satisfy the specification with a concrete input on which H is
wrong. We will now define sufficient conditions that guarantee this property. The first is a
semantic property, called single-point definable specifications, that guarantees the existence
of such concrete input counterexamples and the second is a syntactic fragment of the former,
called single-point refutable specifications, that allows such concrete counterexamples to be
found effectively using a constraint solver.

A single-point definable specification is, intuitively, a specification that restricts how each
input is mapped to the output, independent of how other inputs are mapped to outputs.
More precisely, a single-point definable specification restricts each input ~p ∈ Dn to a set
of outputs X~p ⊆ D and allows any function that respects this restriction for each input. It

15



cannot, however, restrict the output on ~p based on how the function behaves on other inputs.
Many synthesis problems fall into this category (see Section 2.6 for several examples taken
from a recent synthesis competition).

Formally, we define this concept as follows. Let I = Dn be the set of inputs and O = D be
the set of outputs of the function being synthesized.

Definition 2.1 (Single-Point Definable (SPD) Specifications). A specification α is said to
be single-point definable if the following holds. Let F be the class of all functions that satisfy
the specification α. Let g : I → O be a function such that for every ~p ∈ I, there exists some
h ∈ F such that g(~p) = h(~p). Then, g ∈ F (i.e., g satisfies the specification α).

Intuitively, a specification is single-point definable if whenever we construct a function
that maps each input independently according to some arbitrary function that satisfies the
specification, the resulting function satisfies the specification as well. For each input ~p, if
X~p is the set of all outputs that functions that meet the specification map ~p to, then any
function g that maps every input ~p to some element in X~p will also satisfy the specification.
This captures the requirement, semantically, that the specification constrains the outputs of
each input independent of other inputs.
Let us illustrate this definition with the following examples.

Example 2.1. Consider the following specifications in the first-order theory of arithmetic:

• The specification

∀x, y. f(15, 23) = 19 ∧ f(90, 20) = 91 ∧ . . . ∧ f(28, 24) = 35 (2.4)

is single-point definable. More generally, any set of input-output samples can be written
as a conjunction of constraints that forms a single-point definable specification.

• Any specification that is not realizable (i.e., that has no function that satisfies it) is
single-point definable.

• The specification
∀x. f(0) = 0 ∧ f(x+ 1) = f(x) + 1 (2.5)

is single-point definable as the identity function is the only function that satisfies this
specification. More generally, any specification that has a unique solution is single-point
definable.

While single-point definable specifications are quite common, there are prominent specifi-
cations that are not single-point definable. For example, inductive loop invariant synthesis

16



specifications for programs are not single-point definable, as counterexamples to the induc-
tiveness constraint involve two counterexample inputs (the ICE learning model [45] formalizes
this). Similarly, ranking function synthesis is also not single-point definable.

Note that for any single-point definable specification, if H is some expression conjectured
for f that does not satisfy the specification, there will always be one input ~p ∈ Dn on which
H is definitely wrong in that no correct solution agrees with H on ~p. More precisely, we
obtain the following directly from the definition.

Proposition 2.1. Let ∀~x. ψ(f, ~x) be a single-point definable specification and let h : Dn → D

be an interpretation for f such that ∀~x. ψ(f, ~x) does not hold. Then, there exists an input
~p ∈ Dn such that for every function h′ : Dn → D that satisfies the specification, h(~p) 6= h′(~p).

2.2.2 Single-Point Refutable Specifications

While the above proposition ensures that there is a counterexample input for any hypoth-
esized function that does not satisfy a single-point definable function, it does not ensure
that finding such an input is tractable. We now define single-point refutable specifications,
which we show to be a subclass of single-point definable specifications, and for which we can
reduce the problem of finding counterexample inputs to logical satisfiability of the underlying
quantifier-free logic.

Intuitively, a specification ∀~x. ψ(f, ~x) is single-point refutable if for any given hypothetical
interpretation H to the function f that does not satisfy the specification, we can find a
particular input ~p ∈ Dn such that the formula ∃~x. ¬ψ(f, ~x) evaluates to true, and where the
truth-hood is caused solely by the interpretation of H on ~p . The definition of single-point
refutable specifications is involved as we have to define what it means for H on ~p to solely
contribute to falsifying the specification.

We first define an alternate semantics for a formula ψ(f, ~x) that is parameterized by a set
of n variables ~u denoting an input, a variable v denoting an output, and a Boolean variable
b. The idea is that this alternate semantics evaluates the function by interpreting f on
~u to be v, but “ignores” the interpretation of f on all other inputs, and reports whether
the formula would evaluate to b. We do this by expanding the domain to D ∪ {⊥}, where
⊥ is a new element, and have f map all inputs other than ~u to ⊥. Furthermore, when
evaluating formulas, we let them evaluate to b only when we are sure that the evaluation
of the formula to b depended only on the definition of f on ~u. We define this alternate
semantics by transforming a formula ψ(f, ~x) to a formula with the usual semantics but over
an extended domain D+ = D ∪ {⊥}. In this transformation, we use if-then-else (ite) terms

17



for simplicity. Moreover, given a vector ~z = (z1, . . . , z`) (e.g., of variables), we use ~z[i] as a
shorthand for the i-th entry zi of ~z (i.e., z[i] = zi) throughout the rest of this chapter.

Definition 2.2 (Isolate Transformer). Let ~u be a vector of n first-order variables (where n
is the arity of the function to be synthesized), v a first-order variable (different from ones
in ~u), and b ∈ {T, F} a Boolean value. Moreover, let D+ = D ∪ {⊥}, where ⊥ 6∈ D, be the
extended domain, and let the functions and predicates be extended to this domain (the precise
extension does not matter).

For a formula ψ(f, ~x), we define the formula Isolate~u,v,b(ψ(f, ~x)) over D+ by

Isolate~u,v,b(ψ(f, ~x)) := ite
(∨
xi

xi = ⊥,¬b, Isol~u,v,b(ψ(f, ~x))
)
, (2.6)

where Isol~u,v,b is defined recursively as follows:

Isol~u,v,b(x) := x (2.7)

Isol~u,v,b(c) := c (2.8)

Isol~u,v,b(g(t1, . . . , tk)) := ite
(

k∨
i=1

Isol~u,v,b(ti) = ⊥,⊥, g
(
Isol~u,v,b(t1), . . . , Isol~u,v,b(tk)

))
(2.9)

Isol~u,v,b(f(t1, . . . , tn)) := ite
(

n∧
i=1

Isol~u,v,b(ti) = ~u[i], v,⊥
)

(2.10)

Isol~u,v,b(P (t1, . . . , tk)) := ite
(

k∨
i=1

Isol~u,v,b(ti) = ⊥,¬b, P
(
Isol~u,v,b(t1), . . . , Isol~u,v,b(tk)

))
(2.11)

Isol~u,v,b(¬P (t1, . . . , tk)) := ite
(

k∨
i=1

Isol~u,v,b(ti) = ⊥,¬b,¬P
(
Isol~u,v,b(t1), . . . , Isol~u,v,b(tk)

))
(2.12)

Isol~u,v,b(ϕ1 ∨ ϕ2) := Isol~u,v,b(ϕ1) ∨ Isol~u,v,b(ϕ2) (2.13)

Isol~u,v,b(ϕ1 ∧ ϕ2) := Isol~u,v,b(ϕ1) ∧ Isol~u,v,b(ϕ2) (2.14)

Intuitively, the function Isolate~u,v,b(ψ) captures whether ψ will evaluate to b if f maps ~u to
v and independent of how f is interpreted on other inputs. A function of the form f(t1, . . . tn)
is interpreted to be v if the input matches ~u and otherwise evaluated to ⊥. Functions on
terms that involve ⊥ are sent to ⊥ as well. Predicates are evaluated to b only if the predicate

18



is evaluated on terms none of which is ⊥— otherwise, they get mapped to ¬b, to reflect that
it will not help to make the final formula ψ evaluate to b. Note that when Isolate~u,v,b(ψ)
evaluates to ¬b, there is no property of ψ that we claim. Also, note that Isolate~u,v,b(ψ(f, ~x))
has no occurrence of f in it, but has free variables ~x, ~u and v. The following examples
illustrates the isolate transformer.

Example 2.2. Consider the (single-point refutable) specification

ψ(f, x) = f(x) > x+ 1 (2.15)

in linear integer arithmetic over a single variable x. The formula Isol~u,v,b will have free
variables x, u, and v (note that x and u are variables not vectors of variables in this example).

In the first step, we adapt the semantics of the operator + and the predicate > to account
for the new value ⊥ by introducing a new operator +⊥ and a new predicate >⊥. Given two
terms t1 and t2, the operator +⊥ is defined by

t1 +⊥ t2 := ite
(
t1 = ⊥ ∨ t2 = ⊥,⊥, t1 + t2

)
, (2.16)

while the predicate >⊥ is defined by

t1 >⊥ t2 := ite
(
t1 = ⊥ ∨ t2 = ⊥,⊥, t1 > t2

)
. (2.17)

In both cases, the result is ⊥ if one one of the terms evaluates to ⊥, whereas the original
semantics is retained otherwise.
In the second step, we can now apply the isolate transformer to ψ:

Isol~u,v,b(ψ(f, x)) = Isol~u,v,b(f(x) > x+ 1) (2.18)

= Isol~u,v,b(f(x)) >⊥
(
Isol~u,v,b(x) +⊥ Isol~u,v,b(1)

)
(2.19)

= ite(x = u, v,⊥) >⊥ (x+⊥ 1). (2.20)

In total, we obtain

Isolate~u,v,b(ψ(f, x)) = ite
(
x = ⊥,¬b, ite(x = u, v,⊥) >⊥ (x+⊥ 1)

)
(2.21)

which captures whether ψ will evaluate to b if f maps u to v (and independent of how f is
interpreted on other inputs).

We can show (using a induction over the structure of the specification) that the isolation
of a specification to a particular input with b = F , when instantiated according to a function
that satisfies a specification, cannot evaluate to false. This is formalized below.

19



Lemma 2.1. Let ∀~x. ψ(f, ~x ) be a specification and h : Dn → D a function satisfying the
specification. Then, there is no interpretation of the variables in ~u and ~x (over D) such that
if v is interpreted as h(~u), the formula Isolate~u,v,F (ψ(f, ~x )) evaluates to false.

Proof. Let ∀~x. ψ(f, ~x) be a specification and h : Dn → D a function satisfying the specification.
Moreover, let ~u a vector of variables over the domain D, v a variable over D, and b ∈ {T, F}
a Boolean value. Finally, fix a valuation dz ∈ D for each free variable z in Isolate~u,v,b(ψ(f, ~x))
such that dv = h(du[1], . . . , du[n]).
We split the proof into two parts:

1. We show that if Isol~u,v,b(t) evaluates to a non-⊥ value (i.e., to a value in D) for a term
t, then t evaluates to the same value.

2. Using Part 1, we show that if Isol~u,v,F (ϕ) evaluates to false for a formula ϕ, the formula
ϕ evaluates to false as well.

The claim of Lemma 2.1 then follow immediately from Part 2 and the definition of Isolate~u,v,b
since h satisfies the specification and the variable v is interpreted as h(~u).

We prove the first part using an induction over the structure of a term t.

Base case Let t = x or t = c. Then, the claim holds immediately by definition of Isol~u,v,b.

Induction step In the induction step, we distinguish between t = g(t1, . . . , tk) and t =
f(t1, . . . , tn).

• Let t = g(t1, . . . , tk) and assume that Isol~u,v,b(t) evaluates to a non-⊥ value, say
d ∈ D. By definition of Isol~u,v,b, this means that Isol~u,v,b(ti) evaluates to a non-
⊥ value, say di ∈ D, for each i ∈ {1, . . . , k}. Moreover, Isol~u,v,b(t) evaluates
to g(Isol~u,v,b(t1), . . . , Isol~u,v,b(tk)) and, hence, d = g(d1, . . . , dk). Applying the
induction hypothesis now yields that ti also evaluates to di. Since t = g(t1, . . . , tk),
this means that t evaluates to d, as claimed.

• Let t = f(t1, . . . , tn) and assume that Isol~u,v,b(t) evaluates to a non-⊥ value. By
definition of Isol~u,v,b, this means that Isol~u,v,b(ti) = ~u[i] for i ∈ {1, . . . , n}, Moreover,
Isol~u,v,b(t) evaluates to dv. Applying the induction hypothesis now yields that
ti evaluates to d~u[i] ∈ D for each i ∈ {1, . . . , n}. Since t = f(t1, . . . , tn) =
f(~u[1], . . . , ~u[n]) and v is interpreted as h(~v), this means that t evaluates to
h(d~u[1], . . . , d~u[n]) = dv, as claimed.

20



We prove the second part using an induction over the structure of a formula ϕ. Recalls that
we fix b = F for this part of the proof.

Base case In the base case, we distinguish between the two cases ϕ = P (t1, . . . , tk) and
ϕ = ¬P (t1, . . . , tk).

• Let ϕ = P (t1, . . . , tk) and assume that Isol~u,v,F (ϕ) evaluates to false. By
definition of Isol~u,v,b, this means that Isol~u,v,F (ti) evaluates to a non-⊥ value,
say di ∈ D, for each i ∈ {1, . . . , k}. Moreover, Isol~u,v,F (ϕ) evaluates to
P (Isol~u,v,F (t1), . . . , Isol~u,v,F (tk)) and, hence, P (d1, . . . , dk) evaluates to false. The
first part of the proof now yields that ti evaluates to di. Since ϕ = P (t1, . . . , tk),
this means that ϕ evaluates to false, as claimed.

• The case ϕ = ¬P (t1, . . . , tk) is analogous to the case ϕ = P (t1, . . . , tk) and
therefore skipped.

Induction step In the induction step, we distinguish between the two cases ϕ = ϕ1 ∨ ϕ2

and ϕ = ϕ1 ∧ ϕ2.

• Let ϕ = ϕ1 ∨ ϕ2 and assume that Isol~u,v,F (ϕ) evaluates to false. Thus, both
Isol~u,v,F (ϕ1) and Isol~u,v,F (ϕ2) evaluate to false. Applying the induction hypothesis
yields that both ϕ1 and ϕ2 evaluate to false. Thus, ϕ = ϕ1 ∨ ϕ2 evaluates to false,
as claimed.

• The case ϕ = ϕ1 ∧ ϕ2 is analogous to the case ϕ = ϕ1 ∨ ϕ2 and therefore
skipped. Q.E.D.

We can also show (again using structural induction) that when the isolation of the
specification with respect to b = F evaluates to false, then v is definitely not a correct output
on ~u.

Lemma 2.2. Let ∀~x. ψ(f, ~x) be a specification, ~p ∈ Dn an interpretation for ~u, and q ∈
D an interpretation for v such that there is some interpretation for ~x that makes the
formula Isolate~u,v,F (ψ(f, ~x)) evaluate to false. Then, there exists no function h satisfying the
specification that maps ~p to q.

Proof. Let h be a function that satisfies the specification and maps ~p to q. Then, ψ(f, ~x) eval-
uates to true for every interpretation of ~x. By Lemma 2.1, this means that Isolate~u,v,F (ψ(f, ~x))
always evaluates to true or ⊥ (it cannot evaluate to false because then ϕ would evaluate
to false as well). However, this is a contradiction to the assumption that there exists an
interpretation for ~x on which the formula Isolate~u,v,F (ψ(f, ~x)) evaluates to false. Q.E.D.

21



We can now define single-point refutable specifications.

Definition 2.3 (Single-Point Refutable Specifications (SPR)). A specification ∀~x. ψ(f, ~x ) is
said to be single-point refutable if the following holds. Let H : Dn → D be any interpretation
for the function f that does not satisfy the specification (i.e., the specification does not hold
under this interpretation for f). Then, there exists some input ~p that is an interpretation for
~u and an interpretation for ~x such that when v is interpreted to be H(~u), the isolated formula
Isolate~u,v,F (ψ(f, ~x)) evaluates to false.

Intuitively, the above says that a specification is single-point refutable if whenever a
hypothesis function H does not satisfy a specification, there is a single input ~p such that
the specification evaluates to false independent of how the function maps inputs other than
~p. More precisely, ψ evaluates to false for some interpretation of ~x only assuming that
f(~p) = H(~p).

In fact, single-point refutable specifications are single-point definable, which we formalize
below.

Lemma 2.3. If a specification ∀~x. ψ(f, ~x) is single-point refutable, then it is single-point
definable.

Proof. Let ∀~x. ψ(f, ~x) be a single-point refutable specification, and assume that it is not single-
point definable. Moreover, let F be the class of all functions that satisfy this specification.
Then, there exists a function h′ : Dn → D such that for every input ~p ∈ Dn, there exists
some function h ∈ F such that h′(~p) = h(~p), and yet h′ does not satisfy the specification. By
single-point refutability of the specification, there must be some input ~p such that when we
interpret v = h′(~p), there is an interpretation of ~x such that Isolate~u,v,F (ψ(f, ~x )) evaluates
to false. Let h ∈ F be some function that agrees with h′ on ~p. By Lemma 2.2, there is no
function that satisfies the specification and that maps ~u to v, which contradicts the fact that
h satisfies the specification. Q.E.D.

Let us illustrate the definition of single-point refutable specifications through an example
and a non-example.

Example 2.3. Consider the following specifications in the first-order theory of arithmetic:

• The specification

∀x, y. f(15, 23) = 19 ∧ f(90, 20) = 91 ∧ . . . ∧ f(28, 24) = 35 (2.22)

is single-point refutable. More generally, any set of input-output samples can be written
as a conjunction of constraints that forms a single-point refutable specification.

22



• The specification
∀x. f(0) = 0 ∧ f(x+ 1) = f(x) + 1 (2.23)

is not a single-point refutable specification, though it is single-point definable. Given a
hypothesis function (e.g., H(i) = 0 for all i), the formula f(x+ 1) = f(x) + 1 evaluates
to false, but this involves the definition of f on two inputs, and hence we cannot
isolate a single input on which the function H is incorrect. (In evaluating the isolated
transformation of the specification parameterized with b = F , at least one of f(x+ 1)
and f(x) will evaluate to ⊥ and, hence, the whole formula will never evaluate to false.)

When a specification ∀~x. ψ(f, ~x) is single-point refutable, given an expression H for f that
does not satisfy the specification, we can check satisfiability of the formula

∃~u ∃v∃~x.
(
v = H(~u) ∧ ¬Isolate~u,v,F (ψ(H/f, ~x))

)
. (2.24)

Assuming the underlying quantifier-free theory has a decidable satisfiability problem and one
can construct models, the valuation of ~u gives a concrete input ~p, and Lemma 2.2 shows that
H is definitely wrong on this input. This will form the basis of generating counterexample
inputs in the synthesis framework that we present next.

2.3 A GENERAL SYNTHESIS FRAMEWORK BY LEARNING CLASSIFIERS

We now present our general framework for synthesizing functions over a first-order theory
that uses machine-learning of classifiers. Our technique, as outlined in the introduction, is a
counterexample-guided inductive synthesis approach (CEGIS), and works most robustly for
single-point refutable specifications.
Given a single-point refutable specification ∀~x. ψ(f, ~x), the framework combines several

simpler synthesizers and calls to SMT solvers to synthesize a function, as depicted in Figure 2.1.
The solver globally maintains a finite set of expressions E, a finite set of predicates A (also
called attributes), and a finite set S of multi-labeled samples, where each sample is of the
form (~p, Z) consisting of an input ~p ∈ Dn and a set Z ⊆ E of expressions that are correct for
~p (such a sample means that the specification allows mapping ~p to e(~p), for any e ∈ Z, but
not to e′(~p), for any e′ ∈ E \ Z).

Phase 2.1. In every round, the classifier produces a hypothesis expression H for f . The
process starts with a simple expression H, such as one that maps all inputs to a constant.
We feed H in every round to a counterexample input finder module, which essentially is a

23



Classifier

SMT	Solver
Counter-example	finder

Expression	Synthesizer

Attribute	Synthesizer

Label	Finder using	an	SMT	solver
Spec:Update:	

Update:

Global:	
Samples:		
Attributes:	
Expressions:

Figure 2.1: The general synthesis framework based on learning classifiers

call to an SMT solver to check whether the formula

∃~u ∃v ∃~x. (v = H(~u) ∧ ¬Isolate~u,v,F (ψ(f, ~x))) (2.25)

is satisfiable. Note that from the definition of the single-point refutable functions (see
Definition 2.3), whenever H does not satisfy the specification, we are guaranteed that this
formula is satisfiable, and the valuation of ~u in the satisfying model gives us an input ~p on
which H is definitely wrong (see Lemma 2.2). If H satisfies the specification, the formula
would be unsatisfiable (by Lemma 2.1) and we can terminate, reporting H as the synthesized
expression.

Phase 2.2. The counterexample input ~p is then fed to an expression synthesizer whose
goal is to find some correct expression that works for ~p. We facilitate this by generating a
new specification for synthesis that tailors the original specification to the particular input ~p.
This new specification is the formula

ψ↓~p (f̂ , ~x) := Isolate~u,v,T (ψ(f, ~x))[~p/~u, f̂(~p)/v]. (2.26)

Intuitively, the above specification asks for a function f̂ that “works” for the input ~p (i.e.,
there exists a function g satisfying the specification such that g(~p) = f̂(~p)). We do this by
first constructing the formula that isolates the specification to ~u with output v and demand
that the specification evaluates to true; then, we substitute ~p for ~u and a new function symbol
f̂ evaluated on ~p for v. Any expression synthesized for f̂ in this synthesis problem maps ~p to
a value that is consistent with the original specification, which we formalize next.

Lemma 2.4. Let ψ(f, ~x) be a single-point refutable specification and F the class of all
functions satisfying ψ(f, ~x). Moreover, let ~p ∈ Dn be an input to f , and let e be a solution to

24



the synthesis problem with specification ψ↓~p (f̂ , ~x). Then, there exists a function g ∈ F such
that g(~p) = e(~p).

Proof. Using similar arguments as in the proof of Lemma 2.1, we can show that if Isol~u,v,T (ϕ)
(and, hence, Isolate~u,v,T (ϕ)) evaluates to true on some valuation of the free variables ~x, ~u,
and v, then the formula ϕ also evaluates to true on the valuation for ~x. Thus, by substituting
~p for ~u in Isolate~u,v,T (ψ(f, ~x)), we know that if Isolate~u,v,T (ψ(f, ~x))[~p/~u] evaluates to true,
then ψ evaluates to true if f maps ~p to v. Moreover, by substituting f̂(~p) for v, we obtain
the specification ψ↓~p (f̂ , ~x), which constraints f̂ such that ψ(f, ~x) to evaluates to true if
f(~p) = f̂(~p). Thus, any solution e to the synthesis problem with specification ψ↓~p (f̂ , ~x)
guarantees that ψ(f, ~x) evaluates to true if f(~p) = e(~p).
Now, let h ∈ F some function satisfying ψ. Since ψ is single-point refutable (and, hence,

also single-point definable), the function

g(~x) =

e(~p) if ~x = ~p; and

h(~x) otherwise
(2.27)

also satisfies the specification. Thus, g is a function satisfying g ∈ F and g(~p) = e(~p).
Q.E.D.

We emphasize that this new synthesis problem is simpler than the original problem (since
it only requires to synthesize an expression for a single input) and that we can use any
(existing) expression synthesizer to solve it. One important challenge in this context clearly
is to synthesize an expression that is “good” (or general) in the sense that it works for all
(or at least many) inputs in the region ~p belongs to. One possible way to achieve this is
to apply Occam’s razor principle and synthesize an expression that is as simple as possible
with respect to some total order of the expressions (e.g., the length of the expression or
the maximal nesting of sub-expressions). Another way is to define a distance metric on
inputs and synthesize an expression that does not only work for the input ~p but also for
other known inputs in the sample S whose distance to ~p is small. We describe these two
approaches and various further heuristics in more detail in Section 2.5.1, where we present
our implementation of a synthesizer for linear integer arithmetic expressions.

Phase 2.3. Once we synthesize an expression e that works for ~p, we feed it to the next phase,
which adds e to the set of all expressions E (if e is new) and adds ~p to the set of samples.
It then proceeds to find the set of all expressions in E that work for all the inputs in the
samples, and computes the new set of samples. In order to do this, we take every input ~r
that previously existed, and ask whether e works for ~r, and if it does, add e to the set of

25



labels for ~r. Also, we take the new input ~p and every expression e′ ∈ E, and check whether
e′ works for ~p.

To compute this labeling information, we need to be able to check, in general, whether an
expression e′ works for an input ~r. We can do this using a call to an SMT solver that checks
whether the formula ∀~x. ψ↓~r (e′(~r)/f̂(~r), ~x) is valid.

Phase 2.4. We now have a set of samples, where each sample consists of an input and a set
of expressions that work for that input. This is when we look upon the synthesis problem as
a classification problem— that of mapping every input in the domain to an expression that
generalizes the sample (i.e., that maps every input in the sample to some expression that it
is associated with it). In order to do this, we need to split the input domain into regions
defined by a set of predicates A. We hence need an adequate set of predicates that can define
enough regions that can separate the inputs that need to be separated.
Let S be a set of samples and let A be a set of predicates. Two samples (~j, E1) and

(~j′, E2) are said to be inseparable if for every predicate p ∈ A, p(~j) ≡ p(~j′). The set of
predicates A is said to be adequate for a sample S if any set of inseparable inputs in the
sample has a common label as a classification. In other words, if every subset T ⊆ S,
say T = {(~i1, E1), (~i2, E2), . . . (~it, Et)}, where every pair of inputs in T is inseparable, then⋂t
i=1 Ei 6= ∅. We require the attribute synthesizer to synthesize an adequate set of predicates

A, given the set of samples.
Intuitively, if T is a set of pairwise inseparable points with respect to a set of predicates P ,

then no classifier based on these predicates can separate them, and hence they all need to
be classified using the same label; this is possible only if the set of points have a common
expression label.

Phase 2.5. Finally, we give the samples and the predicates to a classification learner, which
divides the set of inputs into regions, and maps each region to a single expression such that
the mapping is consistent with the sample. A region is a conjunction of predicates and
the set of points in the region is the set of all inputs that satisfy all these predicates. The
classification is consistent with the set of samples if for every sample (~r, Z) ∈ S, the classifier
maps ~r to a label in Z. (In Section 2.4, we present a general learning algorithm based on
decision trees that learns such a classifier from a set of multi-labeled samples, and which
biases the classifier towards small trees.)
The classification synthesized is then converted to an expression in the logic (this will

involve nested ite expressions using predicates to define the regions and expressions at leaves
to define the function). The synthesized function is fed back to the counterexample input
finder, as in Phase 1, and the process continues until we manage to synthesize a function

26



that meets the specification.

2.4 MULTI-LABEL DECISION TREE CLASSIFIERS

In this section, we sketch a decision tree learning algorithm for a special case of the so-called
multi-label learning problem, which is the problem of learning a predictive model (i.e., a
classifier) from samples that are associated with multiple labels. (We refer to standard
textbooks on machine learning, e.g., [59], for more information on decision tree learning.)
For the purpose of learning the classifier, we assume samples to be vectors of the Boolean
values B = {F, T} (these encode the values of the various attributes on the counterexample
input returned). The more general case that datapoints also contain rational numbers can
be handled in a straightforward manner as in Quinlan’s C 5.0 algorithm [79, 79].
To make the learning problem precise, let us fix a finite set L = {λ1, . . . , λk} of labels

with k ≥ 2, and let ~x1, . . . , ~xm ∈ Bn be m individual inputs (in the following also called
datapoints). The task we are going to solve, which we call disjoint multi-label learning problem
(cf. [80]), is defined as follows.

Definition 2.4 (Disjoint Multi-Label Learning Problem). Given a finite training set S =
{(~x1, Y1), . . . , (~xm, Ym)} where Yi ⊆ L and Yi 6= ∅ for every i ∈ {1, . . . ,m}, the disjoint multi-
label learning problem is to find a decision tree classifier h : Bn → L such that h(~x) ∈ Y for
all (~x, Y ) ∈ S.

Note that this learning problem is a special case of the multi-label learning problem
studied in machine learning literature, which asks for a classifier that predicts all labels that
are associated with a datapoint. Moreover, it is important to emphasize that we require
our decision tree classifier to be consistent with the training set (i.e., it is not allowed to
misclassify datapoints in the training set), in contrast to classical machine learning settings
where classifier are allowed to make (small) errors.

We use a straightforward modification of Quinlan’s C 5.0 algorithm [79, 79] to solve
the disjoint multi-label learning problem. This modification, sketched in pseudo code as
Algorithm 2.1, is a recursive algorithm that constructs a decision tree top-down. More
precisely, given a training set S, the algorithm heuristically selects an attribute i ∈ {1, . . . , n}
and splits the set into two disjoint, nonempty subsets Si = {(~x, Y ) ∈ S | ~x[i] = T} and
S¬i = {(~x, Y ) ∈ S | ~x[i] = F} (we explain shortly how the attribute i is chosen). Then the
algorithm recurses on the two subsets, whereby it no longer considers the attribute i. Once
the algorithm arrives at a set S ′ in which all datapoints share at least one common label
(i.e., there exists a λ ∈ L such that λ ∈ Y for all (~x, Y ) ∈ S ′), it selects a common label

27



Algorithm 2.1: Multi-label decision tree learning algorithm
Input: A finite set S ⊆ Bn × 2L of datapoints.

1 return DecTree (S, {1, . . . , n}).
2 Procedure DecTree (Set of datapoints S, Attributes A):
3 Create a root node r.
4 if if all datapoints in S have a label in common (i.e., there exists a label λ such that

λ ∈ Y for each (~x, Y ) ∈ S) then
5 Select a common label λ and return the single-node tree r with label λ.
6 else
7 Select an attribute i ∈ A that (heuristically) best splits the sample S.
8 Split S into Si = {(~x, Y ) ∈ S | ~x[i] = T} and S¬i = {(~x, Y ) ∈ S | ~x[i] = F}.
9 Label r with attribute i and return the tree with root node r, left subtree DecTree

(Si, A \ {i}), and right subtree DecTree (S¬i, A \ {i}).
10 end
11 end

λ (arbitrarily), constructs a single-node tree that is labeled with λ, and returns from the
recursion. However, it might happen during construction that a set of datapoints does not
have a common label and cannot be split by any (available) attribute. In this case, it returns
an error, as the set of attributes is not adequate (which we make sure does not happen in
our framework by synthesizing new attributes whenever necessary).
The following theorem states the correctness of Algorithm 2.1 (i.e., that the algorithm

indeed produces a solution to the disjoint multi-label learning problem), which is a result
independent of the exact way an attribute is chosen.

Theorem 2.1. Let L = {λ1, . . . , λk} be a set of labels with k ≥ 2 and S =
{(~x1, Y1), . . . , (~xm, Ym)} ⊆ Bn × 2L a finite training set where Yi 6= ∅ for every i ∈ {1, . . . , n}.
Moreover, assume that each two distinct datapoints (~x, Y ), (~x′, Y ′) ∈ S can be separated by
some attribute i ∈ {1, . . . , n} (i.e., ~x[i] 6= ~x′[i]). Then, Algorithm 2.1 terminates and returns
a decision tree classifier h : Bn → L that satisfies h(~x) ∈ Y for each (~x, Y ) ∈ S.

Proof. We show Theorem 2.1 by induction over the construction of the tree.

Base case Assume that the function DecTree is called with a set S of datapoint that share
a common label (i.e., that there exists a label λ such that λ ∈ Y for each (~x, Y ) ∈ S).
Then, the condition in Line 4 evaluates to true and the algorithm returns a decision
tree h consisting of a single node that is labeled with a label shared by all datapoints
of S (see Line 5). Thus, h satisfies h(~x) ∈ Y for each (~x, Y ) ∈ S.

Induction step Assume that the function DecTree is called with a set S of datapoints that

28



do not share a common label and a set A of available attributes. Then, the condition
in Line 4 is false, and the algorithm proceeds with Lines 7 to 9.

First, we observe that A 6= ∅: since we assume that all datapoints can be separated by
an attribute, A = ∅ implies that S is a singleton and, hence, the condition in Line 4
would be true. Thus, the algorithm can pick an attribute i ∈ A (Line 7), partition
S into two subsamples Si, S¬i (Line 8), and recursively constructs the decision trees
hi = DecTree(Si, A \ {i}) and h¬i = DecTree(S¬i, A \ {i}) (Line 9). Finally, it returns
the decision tree h with root node r whose subtrees are hi and h¬i, respectively.

Since the root of h is labeled with attribute i, one can write h as

h(~x) =

hi(~x) if ~x[i] = T ; and

h¬i(~x) if ~x[i] = F .
(2.28)

Moreover, applying the induction hypothesis yields that hi satisfies hi(~x) ∈ Y for each
(~x, Y ) ∈ Si and h¬i(~x) ∈ Y for each (~x, Y ) ∈ S¬i. Thus, if ~x[i] = T for some (~x, Y ) ∈ S,
then (~x, Y ) ∈ Si and, hence, h(~x) = hi(~x) ∈ Y ; on the other hand, if ~x[i] = F for some
(~x, Y ) ∈ S¬i, then (~x, Y ) ∈ S¬i and, hence, h(~x) = h¬i(~x) ∈ Y . Q.E.D.

The selection of a “good” attribute to split a a set of datapoints lies at the heart of the
decision tree learner as it determines the size of the resulting tree and, hence, how well the
tree generalizes the training data. This problem is best understood in the simpler single-label
setting in which datapoints are labeled with one out of two possible labels, say 0 or 1.
To obtain a small decision tree, the learning algorithm should split samples such that the
resulting subsamples are as pure as possible (i.e., one subsample contains as many datapoints
as possible labeled with 0, whereas the other subsample contains as many datapoints as
possible labeled with 1). This way, the learner will quickly arrive at samples that contain a
single label and, hence, produce small a tree.
The quality of a split can be formalized by the notion of a measure, which, roughly, is a

measure µ mapping pairs of sets of datapoints to a set R that is equipped with a total order
� over elements of R (usually, R = R≥0 and � is the natural order over R). Given a set S
to split, the learning algorithm first constructs subsets Si and S¬i for each available attribute
i and evaluates each such candidate split by computing µ(Si, S¬i). It then chooses a split
that has the least value.

In the single-label setting, information theoretic measures, such as information gain (based
on Shannon entropy) and Gini, have proven to produce successful classifiers [81]. In the
case of multi-label classifiers, however, finding a good measure is still a matter of ongoing

29



research (e.g., see [82] for an overview). Both the classical entropy and Gini measures can be
adapted to the multi-label case in a straightforward way by treating datapoints with multiple
labels as multiple identical datapoints with a single label. More precisely, the main idea is to
replace each multi-labeled datapoint (~x, {λ1, . . . , λk}) with the datapoints (~x, λ1), . . . , (~x, λk)
and proceeds as in classical decision tree learning.
We now briefly sketch these modifications, including a modification described by [83]. In

all cases, we fix R = R and let � be the natural order over R.

Entropy Intuitively, entropy is a measure for the amount of “information” contained in a
sample; the higher the entropy, the higher the randomness of the sample. Formally,
one defines the entropy of a sample S with multiple labels by

e(S) = −
∑
λ∈L

pλ · log2 pλ, (2.29)

where pλ is the relative frequency of the label λ defined by

pλ = |{(~x, Y ) ∈ S | λ ∈ Y }|∑
(~x,Y )∈S |Y |

. (2.30)

The corresponding measure µe(S1, S2) is the weighted average of e(S1) and e(S2).

Gini One can think of Gini as the probability of making a classification error if the whole
sample is uniformly labeled with a randomly chosen label. Formally, for a sample S
with multiple labels, one defines Gini by

g(S) =
∑

λ 6=λ′∈L
pλ · pλ′ , (2.31)

where pλ is again the relative frequency of the label λ (see above). The Gini measure
µg(S1, S2) is the weighted average of g(S1) and g(S2).

pq-entropy The modification of entropy by [83] accounts for multiple labels by considering
for each label the probability of being labeled with λ (i.e., the relative frequency of λ)
as well as probability of not being labeled with λ. More precisely, for a sample S with
multiple labels, Clare and King define

pq-e = −
∑
λ∈L

pλ · log2 pλ + qλ · log2 qλ, (2.32)

30



where pλ is the relative frequency of the label λ and qλ = 1−pλ. As measure µpq-e(S1, S2),
Clare and King use the weighted average of pq-e(S1) and pq-e(S2).

However, all of these approaches share the disadvantage that the association of datapoints
to sets of labels is lost. As a consequence, measures can be high even if all datapoints
share a common label; for instance, such a situation occurs for S = {(~x1, Y1), . . . , (~xm, Ym)}
with {λ1, . . . , λ`} ⊆ Yi for every i ∈ {1, . . . ,m}. Therefore, one would ideally like to have a
measure that maps to 0 if all datapoints in a set share a common label and to a value strictly
greater than 0 if this is not the case. We now present a measure, based on the combinatorial
problem of finding minimal hitting sets, that possesses this property. To the best of our
knowledge, this measure is a novel contribution and has not been studied in the literature.
For a set S of datapoints, a set H ⊆ L is a hitting set if H ∩ Y 6= ∅ for each (~x, Y ) ∈ S.

Moreover, we define the measure hs(S) = minhitting set H |H| − 1 (i.e., the cardinality of a
smallest hitting set reduced by 1). As desired, we obtain hs(S) = 0 if all datapoints in S
share a common label and hs(S) > 0 if this is not the case. When evaluating candidate
splits, we would prefer to minimize the number of labels needed to label the datapoints in
the subsets; however, if two splits agree on this number, we would like to minimize the total
number of labels required. Consequently, we propose R = N× N with (n,m) � (n′,m′) if
and only if n < n′ or n = n′ ∧m ≤ m′, and as measures

µhs(S1, S2) =
(
max {hs(S1), hs(S2)}, hs(S1) + hs(S2)

)
. (2.33)

Unfortunately, computing hs(S) is computationally hard. Therefore, we implemented a
standard greedy algorithm (the dual of the standard greedy set cover algorithm [84]), which
runs in time polynomial in the size of the sample and whose solution is at most logarithmically
larger than the optimal solution.

2.5 A SYNTHESIS ENGINE FOR LINEAR INTEGER ARITHMETIC

We now describe an instantiation of our framework (described in Section 2.3) for synthesizing
functions expressible in linear integer arithmetic against quantified linear integer arithmetic
specifications.

The counterexample input finder (Phase 1) and the computing of labels for counterexample
inputs (Phase 3) are implemented straightforwardly using an SMT solver (note that the
respective formulas will be in quantifier-free linear integer arithmetic). The Isolate() function
works over a domain D ∪ {⊥}; we can implement this by choosing a particular element ĉ in
the domain and modeling every term using a pair of elements, one that denotes the original

31



term and the second that denotes whether the term is ⊥ or not, depending on whether it is
equal to ĉ. It is easy to transform the formula now to one that is on the original domain D
(which in our case integers) itself.

2.5.1 Expression Synthesizer

Given an input ~p, the expression synthesizer has to find an expression that works for ~p.
Our implementation deviates slightly from the general framework.
In the first phase, it checks whether one of the existing expressions in the global set E

already works for ~p. This is done by calling the label finder (as in Phase 3). If none of the
expressions in E work for ~p, the expression synthesizer proceeds to the second phase, where
it generates a new synthesis problem with specification ∀~x. ψ↓~p(f̂ , ~x) according to Phase 2 of
Section 2.3, whose solutions are expressions that work for ~p. It solves this synthesis problem
using a simple CEGIS-style algorithm, which we sketch next.
Let ∀~x. ψ(f, ~x) be a specification with a function symbol f : Zn → Z, which is to be

synthesized, and universally quantified variables ~x = (x1, . . . , xm). Our algorithm synthesizes
affine expressions of the form (∑n

i=1 ai · yi) + b where y1, . . . , yn are integer variables, ai ∈ Z
for i ∈ {1, . . . , n}, and b ∈ Z. The algorithm consists of two components, a synthesizer and a
verifier, which implement the CEGIS principle in a similar but simpler manner as our general
framework. Roughly speaking, the synthesizer maintains an (initially empty) set V ⊆ Zm of
valuations of the variables ~x and constructs an expression H for the function f that satisfies
ψ at least for each valuation in V (as opposed to all possible valuations). Then, it hands this
expression over to the verifier. The task of the verifier is to check whether H satisfies the
specification. If this is the case, the algorithm has identified a correct expression, returns
it, and terminates. If this not the case, the verifier extracts a particular valuation of the
variables ~x for which the specification is violated and hands it over to the synthesizer. The
synthesizer adds this valuation to V , and the algorithm iterates. The synthesizer and verifier
are implemented as follows.

Synthesizer The synthesizer maintains a finite set V ⊆ Zm of valuations of the universally
quantified variables ~x and constructs expressions for the synthesis function f that satisfies
ψ at least on all valuations in V . To this end, the synthesizer first constructs a template
expression t(~a, b, ~y) of the form described above, but where ~a = (a1, . . . , an), and b are now
variables (note that this expression is not linear due to the terms ai · yi). Then, it constructs

32



the formula
ϕ(~a, b) :=

∧
~v∈V

ψ(t/f,~v/~x). (2.34)

Note that ϕ is a formula in linear integer arithmetic since all occurrences of variables yi have
been replaced with integers values. Finally, the algorithm uses an SMT solver to obtain
valuations of ~a and b that satisfy ϕ; note that ϕ is guaranteed to be satisfiable since we
use the synthesizer in a special setting, namely to synthesize expressions for a single-point
definable specification. The synthesizer substitutes the satisfying assignment for ~a and b in
the template t and returns the resulting expression H.

Verifier Given an expression H conjectured by the synthesizer, the verifier has to check
whether

ϕ := ψ(H/f, ~x) (2.35)

is valid. To this end, the verifier turns this validation problem into a satisfiability problem
by querying an SMT solver whether ¬ϕ is satisfiable. If ¬ϕ is satisfiable, then the verifier
extracts a satisfying assignment ~v for the universal quantified variables and returns ~v to the
synthesizer. If ¬ϕ is unsatisfiable, an expression satisfying the specification has been found
and the synthesizing algorithm returns it.

2.5.1.1 Further Heuristics

Our implementation for synthesizing expressions for linear arithmetic constraints has
several other heuristics that we briefly describe.
First, some technical aspects of the counterexample finder and the label finder are im-

plemented a bit differently than explained above. We use array theories and uninterpreted
functions to extract the counterexample point from the specification and the hypothesis
(instead of using the Isolate transformer), and to check if a point works for an expression.

The counterexample finder prioritizes data-points that have a single classification, and
returns multiple counterexamples in each round, to facilitate better learning.

We also maintain an initial set of enumerated expressions, and dovetail through them lazily
before invoking the expression synthesizer. These initial expressions has coefficients between
−1 and 1 for all the variables. If none of these expression work for the counterexample point,
the expression synthesizer is invoked.

There are also phases in our algorithm where, when examining an enumerated expression,
we would ask a constraint solver whether this expression would work for any input (not
necessarily the counterexample input) and if possible, add the new point and the expression to

33



the sample. Further, when we do find a unique expression that works for the counterexample,
we ask the constraint solver for more points for which this expression would work, and add
them as extra samples. When multiple expressions work for a point, we strive to find another
point for which only one of them works (in order to avoid considering spurious expressions)
and add them to the sample.
The expression synthesizer also uses a heuristic motivated by a geometric intuition. We

would expect the correct expression for a point to work also on points neighboring it (unless
it lies close to the boundary of a piece-wise region). In order to synthesize a n-dimension
expression, we need at least (n+1) points that lie on that plane. If (y1, y2, . . . yn) is a point,
then it is highly likely that the “correct” expression for the point would also work for its
immediate neighboring points in each dimension, namely (y1 + 1, y2 . . . yn), (y1, y2 + 1 . . . yn),
. . . (y1, y2, . . . , yn + 1). We constrain the SMT solver to synthesize a n-dimensional expression
with integer coefficients that works for all these (n+1) points. If no such expression exists,
then we resort to synthesizing an expression only for the counterexample.

2.5.2 Expression Synthesizer for Unique Specifications

In an earlier work [85], we designed an expression synthesizer module for the restricted
case of a unique specification where the specification has only one unique solution. As the
function to synthesize is unique, it is not hard to see that each counterexample can only be
labeled with one expression, instead of multiple expressions in the general case. In addition
to synthesizing expressions, the synthesizer module also labels the counterexamples with
the expression that works for it. The framework globally maintains a set P consisting of all
the counterexamples found across rounds, where each counterexample is an input-output
pair (~p, v) such that f(~p) = v according to the specification. Once completed the synthesizer
updates the set E of expressions, and the set S of samples, where each sample is of the form
(~p, {e}), such that ~p ∈ P , and the expression e is correct for ~p according to the specification.

To solve this problem we used computational geometry. Assuming the function to synthesize
f is of arity n, then the problem of finding the expressions that covers all the counterexamples
can be viewed as the problem finding planes in a (n+1)-dimensional space where the space
describes the input-output behavior of the function f . The synthesizer learns from all
previously found counterexamples, where each counterexample is an input-output pair (~p, v),
and can be viewed as a point in this (n+1)-dimensional space. We would essentially like
to find a small set of planes, that include all the given points in this space. We solve this
problem using a greedy algorithm that uses geometric techniques to determine coplanarity
between points in this (n+1)-dimensional space.

34



Algorithm 2.2: Algorithm for constructing planes that cover the input points
1 Function Construct-Plane(P , k):
2 Select a random point pt = (~p, v) ∈ P ;
3 C := set of 2n points closest to pt ;
4 Y := collection of all subsets of (n+1) points in C ;
5 foreach subset Z in Y do
6 if the set of points in (Z ∪ pt) are coplanar then
7 pln := find_plane (Z ∪ pt) ;
8 Sel := set of points in P that lie on plane pln ;
9 if |Sel| > d|P |/ke then

10 label the points in Sel as pln ;
11 Return { (pt, {pln}) | pt ∈ Sel } ;
12 end
13 end
14 end
15 end

Let us assume that the number of points in P is large, and that we want to find k planes,
where k is a small constant, that cover all the points. We try to find a greedy strategy to find
a small number of k planes such that every point is covered by one plane. We start with a
small budget of k and increase k when it does not suffice. Note that if k planes are sufficient
to cover all points, then there must be at least d|P |/ke points that are covered by a single
plane. Hence our strategy is to find a plane in a greedy manner that covers at least these
many points. Once we find such a plane, we can remove all the points that are covered by
the plane, and recurse decrementing k.
Note that in a (n+1)-dimensional space, one can always construct a plane that passes

through any (n+1) points. Hence, our strategy is to choose sets of (n+2) points and check if
they are coplanar (and then check if they cover enough points). Since we are synthesizing
a piece-wise functions, it is likely that the expressions are defined over a local region, and
hence we would like to choose the (n+2) points such that they are close to each other. Our
algorithm Construct-Plane, searches for a plane by (a) choosing a random point pt and
taking the closest 2n points next to pt, by computing the distance of all points to pt, sorting
them, and picking the closest 2n points and (b) choosing every combination of (n+2) points
from this set and checking it for coplanarity.
Coplanarity of such (n+2) points in the (n+1)-dimensional space, can be verified by

checking the value of the following determinant:

35



∣∣∣∣∣∣∣∣∣∣∣∣

p1
1 p2

1 . . . pn1 v1 1
p1

2 p2
2 . . . pn2 v2 1

... ... ... ... ...
p1
n+2 p2

n+2 . . . pnn+2 vn+2 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.36)

This is a standard result in computational geometry [86]. The plane defined by these (n+2)
points can be constructed by solving for the coefficients ci in the set of equations, where
the j-th equation is Σn

i=1ci p
i
j + cn+1 vj = cn+2, and we substitute the pj’s and vj with the

j-th point. The above two require numerical solvers and can be achieved using software like
MatLab or Octave.
If the above process discovers k planes that cover all points in the sample, then we are

done. If not, we are either left with too few points (< n+2) or too many points and have
run out of the budget of planes. In the former case, we ignore these points and proceed to
the later phases. Once the classifier has proposed a hypothesis, we then add these points
back as special points on which the answers are fixed using appropriate constants. In the
latter case, we increase our budget k, and continue.

There are several parameters that can be tuned for performance, including (a) how many
points the teacher returns in each round, (b) the number of points in the window from which
we select points to find planes, (c) the threshold of coverage for selecting a plane, etc. These
parameters can be tweaked for better performance on the application at hand.

2.5.3 Predicate Synthesizer

Since the decision tree learning algorithm (which is our classifier) copes extremely well with
a large number of attributes, we do not spend time in generating a small set of predicates.
We build an enumerative predicate synthesizer that simply enumerates and adds predicates
until it obtains an adequate set.
More precisely, the predicate synthesizer constructs a set Aq of attributes for increasing

values of q ∈ N. The set Aq contains all predicates of the form ∑n
i=1 ai · yi ≤ b, where yi are

variables corresponding to the function arguments of the function f that is to be synthesized,
ai ∈ Z such that each Σn

i=1|ai| ≤ q, and |b| ≤ q2. If Aq is already adequate for S (which can be
checked by recursively splitting the sample with respect to each predicate in Aq and checking
if all samples at each leaf has a common label), we stop, else we increase the parameter q by
one and iterate. Note that the predicate synthesizer is guaranteed to find an adequate set for
any sample. The reason for this is that one can separate each input ~p into its own subsample
(assuming each individual variable is also an attribute) provided q is large enough.

36



2.5.4 Classifier Learner

We use the decision tree learner described in Section 2.4 to learn a decision tree classifier
over the samples S and the predicates A. In a preparatory step, the classification learner
transforms each input ~p ∈ S to a Boolean vector ~b~p: given ~p and predicates A = {p1, . . . , pm},
it constructs the Boolean vector ~b~p = (p1(~p), . . . , pm(~p)) ∈ Bm. It collects all transformed
inputs in a new sample S ′, where the label of ~b~p is the classification of ~p. (Also here, one
would clearly construct S ′ incrementally, growing it in each iteration.)

Once the set S ′ has been created, we run the decision tree learner on S ′. The result is a
tree τ , say with root node vr, whose inner nodes are labeled with predicates from A and
whose leafs are labeled with expression from E. The formula in linear integer arithmetic
corresponding to τ is the nested if-then-else expression to-ite(vr), where to-ite(v) for a tree
node v is recursively defined by

• if v is a leaf node labeled with expression e, then to-ite(v) := e; and

• if v is an inner node labeled with predicate p and children v1 and v2, then to-ite(v) :=
ite(p, to-ite(v1), to-ite(v2)).

The classification learner finally returns to-ite(vr).

2.6 EVALUATION

We implemented the framework described in Section 2.5 for specifications written in the
SyGuS format [1, 87]. The implementation is about 5K lines in C++ with API calls to the
Z3 SMT solver [88].
We evaluated our tool parameterized using the different measures in Section 2.4 against

44 benchmarks. These benchmarks are predominantly from the 2014–2016 SyGuS competi-
tions [1, 51, 64]. Additionally, there is an example from [63] for deobfuscating C code using
bitwise operations on integers (we query this code 30 times on random inputs, record its out-
put and create an input-output specification, Jha_Obs, from it). The synthesis specification
max3Univ reformulates the specification for max3 using universal quantification, as

∀x, r1, r2, y1, y2, y3. (r1 < 0 ∧ r2 < 0)⇒

((y1=x∧ y2=x+r1∧ y3=x+r2)∨ (y1=x+r1∧ y2=x∧ y3=x+r2)∨ (y1=x+r1∧ y2=x+r2∧ y3=x))

⇒ max3(y1, y2, y3) = x. (2.37)

37



0.1

1

10

100
Ti
m
e	
(s
)

e-gini pq-entropy Hitting	Set *	Input-Output examples

TO

Figure 2.2: Experimental results

All experiments were performed on a system with an Intel Core i7-4770HQ 2.20GHz CPU
and 4GB RAM running 64-bit Ubuntu 14.04 with a 200 seconds timeout.
Table 2.1 and Figure 2.2 compare the three measures: e-gini, pq-entropy and hitting set.

None of the algorithms dominates. All solvers time-out on two benchmarks each. The
hitting-set measure is the only one to solve LinExpr_eq2. E-gini and pq-entropy can solve
the same set of benchmarks but their performance differs on the example* specs, where
e-gini performs better, and max* where pq-entropy performs better.

Table 2.1 also compares the compositional approach to synthesis presented in this chapter
(using three learners, one for leaf expressions, one for predicates, and one for the Boolean
expression combining them) with a monolithic learner based on a CEGIS algorithm that
synthesizes the entire function using a constraint solver. As is evident from this table, our
algorithm is more often than not faster than the monolithic constraint-based solver. The
latter times out on a large number of specifications.

The CVC4 SMT-solver based synthesis tool [89] (which won the conditional linear integer
arithmetic track in the SyGuS 2015 and 2016 competitions [51, 64]) worked very fast on these
benchmarks, in general, but does not generalize from underspecifications. On specifications
that list a set of input-output examples (marked with ∗ in Figure 2.2), CVC4 simply returns
the precise map that the specification contains, without generalizing it. CVC4 allows
restricting the syntax of target functions, but using this feature to force generalization (by
disallowing large constants) renders them unsolvable. CVC4 was also not able to solve,
surprisingly, the fairly simple specification max3Univ (although it has the single-invocation
property [89]).

The general track SyGuS solvers (enumerative, stochastic, constraint-solver, and Sketch) [1]
do not work well for these benchmarks (and did not fare well in the competitions either); for
example, the enumerative solver, which was the winner in 2014 can solve only 16 of the 44
benchmarks.

38



Benchmarks e-gini pq-entropy Hitting set Constr. solver
Rounds Time Rounds Time Rounds Time Time

Jha_Obs 1 0.2 1 0.2 1 0.2 0.5
LinExpr_eq1 - TO - TO - TO TO
LinExpr_eq1ex 9 3.6 10 3.3 10 3.2 122.9
LinExpr_eq2 - TO - TO 31 36.8 2.3
LinExpr_eq2ex 48 94.5 49 93.6 50 93.1 1.0
LinExpr_inv1_ex 39 11.5 39 10.9 38 11.1 0.1
array_search_2 7 0.6 7 0.6 6 0.6 2.6
array_search_3 7 1.3 7 1.2 7 1.2 30.2
array_search_4 12 4.5 11 4.4 16 4.6 TO
array_search_5 19 10.7 20 10.7 16 10.6 TO
array_search_6 22 50.2 22 40.0 22 49.3 TO
array_search_7 27 174.6 22 174.0 20 170.1 TO
array_sum_2_15 5 0.3 5 0.3 5 0.3 0.7
array_sum_2_5 7 0.4 7 0.4 12 0.6 0.2
array_sum_3_15 9 0.8 9 0.7 40 15.8 43.0
array_sum_3_5 31 2.1 39 2.9 20 1.7 12.7
array_sum_4_15 28 7.0 76 26.0 44 139.5 TO
array_sum_4_5 187 169.8 105 47.2 - TO TO
max2 3 0.2 3 0.2 3 0.2 0.3
max3 8 0.4 8 0.4 8 0.4 4.7
max3Univ 9 0.7 9 0.7 8 0.7 2.5
max4 18 1.0 16 0.9 12 0.7 TO
max5 44 2.8 51 3.4 32 2.2 TO
max6 130 15.4 94 9.3 47 5.2 TO
max7 327 136.1 271 98.6 65 13.2 TO
max8 - TO - TO 140 92.0 TO
example1 3 0.3 3 0.3 3 0.3 1.2
example2 31 2.4 30 2.0 - TO TO
example3 10 3.2 12 46.8 14 65.3 2.6
example4 29 15.0 46 61.1 52 66.7 TO
example5 9 0.6 9 0.6 20 1.5 TO
guard1 3 0.3 3 0.3 3 0.3 0.2
guard2 2 0.3 2 0.3 2 0.3 0.2
guard3 4 0.4 4 0.4 4 0.4 0.3
guard4 4 0.4 4 0.4 4 0.4 0.3
ite1 4 0.7 4 0.7 4 0.7 2.8
ite2 9 0.9 11 1.0 7 0.9 1.9
plane1 1 0.2 1 0.2 1 0.2 0.1
plane2 1 0.4 1 0.4 1 0.4 0.2
plane3 1 0.4 1 0.4 1 0.4 0.2
s1 5 0.3 5 0.3 5 0.3 0.1
s2 2 0.2 2 0.2 2 0.2 0.1
s3 1 0.2 1 0.2 1 0.2 0.1

Table 2.1: Experimental performance of the measures e-gini, pq-entropy, hitting set and the
constraint solver. Times are given in seconds. “TO” indicates a timeout of 200s.

39



The above results show that the synthesis framework developed in this chapter that uses
theory-specific solvers for basic expressions and predicates, and combines them using a
classification learner yields a competitive solver for the linear integer arithmetic domain. We
believe more extensive benchmarks are needed to fine-tune our algorithm, and especially in
choosing the right statistical measures for decision-tree learning.

2.7 RELATED WORK

Our learning task is closely related to the syntax-guided synthesis framework (SyGuS) [1],
which provides a language, similar to SMTLib [90], to describe synthesis problems. Several
solvers following the counterexample-guided inductive synthesis approach (CEGIS) [3] for
SyGuS have been developed [1], including an enumerative solver, a solver based on constraint
solving, one based on stochastic search, and one based on the program synthesizer Sketch [91].
Recently, a solver based on CVC4 [89] has also been presented.

There has been several works on synthesizing piece-wise affine models of hybrid dynamical
systems from input-output examples [92, 93, 94, 95] (we refer the reader to [96] for a
comprehensive survey). The setting there is to learn an affine model passively (i.e., without
feedback whether the synthesized model satisfies some specification) and, consequently, only
approximates the actual system. The learning framework we develop in this chapter, as well
as the synthesis algorithms we use for linear-arithmetic (the outer learner, the expression
synthesizer and the predicate synthesizer) can be seen as an abstract learning framework [97].

2.8 CONCLUSIONS AND FUTURE WORK

We have presented a novel compositional framework for synthesizing piece-wise functions
over any theory that combines three engines— a synthesizer for the simpler leaf expressions
used in a region, the predicates that can be used to define the boundaries of regions, and
the Boolean expression that defines the regions themselves and chooses the leaf expressions
to apply to each region. We have shown how to formulate automatically the specifications
for synthesizing leaf expressions and predicate expressions from the synthesis specification,
and developed generic classification algorithms for learning regions and mapping them to
expressions using decision-tree based machine-learning algorithms.
One future direction worth pursuing is to build both specific learning algorithms for

synthesis problems based on our framework, as well as build general solutions to synthesis
(say for all SyGuS specifications). One piece of work that has emerged since the publication

40



of our result is the EUSolver [65], which can be seen as an instantiation of our framework,
using enumerative techniques to synthesize both leaf expressions and predicates, and using a
decision-tree classifier similar to ours for finding and mapping regions to expressions. The
EUSolver has performed particularly well in the SyGuS 2016 [64] competition, winning
several tracks, and in particular working well for the class of ICFP benchmark synthesis
challenge problems, solving a large proportion of them for the first time. We also note that
the original winner for the ICFP benchmarks (in the competition held in 2013 [66]) also
used a compositional approach to synthesis that discovered leaf expressions individually for
points and then combined them. This experimental evidence suggests that the compositional
framework outlined in this chapter is likely a more efficient approach to synthesis of piece-wise
functions.
Another interesting future direction is to extend our framework beyond single-point

definable/refutable specifications, in particular to bounded point definable/refutable functions.
When synthesizing inductive invariants for programs, the counterexamples to hypothesized
invariants are not single counterexamples, but usually involve two counterexamples connected
with an implication (see the model of ICE learning [45]). Extending our framework to
synthesize for such specifications would be interesting. (Note that in invariants, the leaf
expressions are fixed (T/F), and only the predicates separating regions need to be synthesized.)
In summary, the synthesis approach developed in this chapter brings a new technique,

namely machine-learning, to solving synthesis problems, in addition to existing techniques such
as enumeration, constraint-solving, and stochastic search. Leaf expressions and predicates
belong to particular theories that have complex semantics, and are hence best synthesized
using dedicated synthesis procedures. However, combining the predicates to form regions
and mapping regions to particular expressions can be seen as a generic classification problem
that can be realized by learning Boolean formulas, and is independent of the underlying
theories. By using a learner of Boolean formulas (decision trees in our setting), we can
combine theory-specific synthesizers for leaf expressions and predicates to build efficient
learners of piece-wise functions.

41



CHAPTER 3: INVARIANT SYNTHESIS FOR INCOMPLETE
VERIFICATION ENGINES

In this chapter we consider the application of deductive program verification where pro-
grammers typically annotate their code with contracts and inductive invariants, and use
high-level directives to validate verification conditions using a mostly-automated logic engine.
Specifically, we propose a framework for synthesizing inductive invariants to make the task
of program verification automatic.

In prior work, learning-based counterexample guided inductive synthesis (CEGIS) methods
have been proposed [45, 46, 47, 67], which are data-driven and learn from concrete program
configurations returned by the verification oracle as counterexamples to incorrect invariants.
However, these techniques cannot be used in settings where the underlying verification
problem falls in an undecidable theory, and the verification oracle is incomplete i.e., the
oracle resorts to sound but incomplete heuristics to check validity of verification conditions
and hence cannot generate a concrete model when verification conditions are not provable.

The framework we propose in this chapter assumes that we have an incomplete verification
oracle. In this setting, we extract certain non-provability information from the verification
oracle as counterexamples when the conjectured invariant results in verification conditions
that cannot be proven. The non-provability information is a Boolean formula on a fixed set of
predicates, that generalizes the reason for non-provability, hence pruning the space of future
conjectured predicates. Finally, we reduce the formula-driven problem of learning expressions
from non-provability information to the data-driven ICE model [45]. This reduction allows us
to use a host of existing ICE learning algorithms and results in a robust invariant synthesis
framework that guarantees to synthesize a provable invariant if one exists.

In particular, in this chapter:

• The application is inductive invariant synthesis.

• The verification oracle is an oracle for heap verification using natural proofs, and a
quantifier-instantiation based logic solver for contracts that have universally quantified
formulas. In both cases, the verification oracle is sound but not complete.

• The verification oracle, being incomplete, cannot return concrete counterexamples for
proposed invariants. Consequently, the class of counterexamples encode non-provability
information of particular predicates in the postcondition of Hoare-triples.

• The learning algorithm needs to propose hypotheses that include only provable concepts.
We implement this using a reduction to ICE-learning of Boolean formulas.

42



3.1 INTRODUCTION

The paradigm of deductive verification [98, 99] combines manual annotations and semi-
automated theorem proving to prove programs correct. Programmers annotate code they
develop with contracts and inductive invariants, and use high-level directives to an underlying,
mostly-automated logic engine to verify their programs correct. Several mature logic engines
have emerged that support such verification, in particular tools based on the intermedi-
ate verification language Boogie [71] and the SMT solver Z3 [88] (e.g., Vcc [100] and
Dafny [101]).
Viewed through the lens of deductive verification, the primary challenges in automating

verification are two-fold. First, even when strong annotations in terms of contracts and
inductive invariants are given, the validity problem for the resulting verification conditions
is often undecidable (e.g., in reasoning about the heap, reasoning with quantified logics,
and reasoning with non-linear arithmetic). Second, the synthesis of loop invariants and
strengthenings of contracts that prove a program correct needs to be automated to lift this
burden currently borne by the programmer.
A standard technique to solve the first problem (i.e., intractability of validity checking

of verification conditions) is to build automated, sound but incomplete verification engines
for validating verification conditions, thus skirting the undecidability barrier. Several such
techniques exist; for instance, for reasoning with quantified formulas, tactics such as E-
matching [102, 103], pattern-based quantifier instantiation [103], model-based quantifier
instantiation [104] are effective in practice, and they are known to be complete in certain
settings [105]. In the realm of heap verification, the so-called natural proof method explicitly
aims to provide automated and sound but incomplete methods for checking validity of
verification conditions with specifications in separation logic [68, 69, 105, 106].

Turning to the second problem of invariant generation, several techniques have emerged
that can synthesize invariants automatically when validation of verification conditions fall in
decidable classes. Prominent among these are interpolation [107] and IC3/PDR [108, 109].
Moreover, a class of learning-based counter-example guided inductive synthesis (CEGIS)
methods have emerged recently, including the ICE learning model [45] for which various
instantiations exist [45, 46, 47, 67]. The key feature of the latter methods is a program-
agnostic, data-driven learner that learns invariants in tandem with a verification engine that
provides concrete program configurations as counterexamples to incorrect invariants.

Although classical invariant synthesis techniques, such as Houdini [70], are sometimes used
with incomplete verification engines, to the best of our knowledge, there is no fundamental
argument as to why this should work in general. In fact, we are not aware of any systematic

43



technique for synthesizing invariants when the underlying verification problem falls in an
undecidable theory. When verification is undecidable and the engine resorts to sound but
incomplete heuristics to check validity of verification conditions, it is unclear how to extend
interpolation/IC3/PDR techniques to this setting. Data-driven learning of invariants is also
hard to extend since the verification engine typically cannot generate a concrete model for
the negation of verification conditions when verification fails. Hence, it cannot produce the
concrete configurations that the learner needs.

In this work we propose a learning-based invariant synthesis framework that learns invariants
using non-provability information provided by verification engines. Intuitively, when a
conjectured invariant results in verification conditions that cannot be proven, the idea is that
the verification engine must return information that generalizes the reason for non-provability,
hence pruning the space of future conjectured invariants.
Our framework assumes a verification engine for an undecidable theory U that reduces

verification conditions to a decidable theory D (e.g., using heuristics such as bounded
quantifier instantiation to remove universal quantifiers, function unfolding to remove recursive
definitions, and so on) that permits producing models for satisfiable formulas. The translation
is assumed to be conservative in the sense that if the translated formula in D is valid, then
we are assured that the original verification condition is U -valid. If the verification condition
is found to be not D-valid (i.e., its negation is satisfiable), on the other hand, our framework
describes how to extract non-provability information from the D-model. This information is
encoded as conjunctions and disjunctions in a Boolean theory B, called conjunctive/disjunctive
non-provability information (CD-NPI), and communicated back to the learner.

To complete our framework, we show how the formula-driven problem of learning expressions
from CD-NPI constraints can be reduced to the data-driven ICE model. This reduction
allows us to use a host of existing ICE learning algorithms and results in a robust invariant
synthesis framework that guarantees to synthesize a provable invariant if one exists.

However, our CD-NPI learning framework has non-trivial requirements on the verification
engine, and building or adapting appropriate engines is not straightforward. To show that
our framework is indeed applicable and effective in practice, our second contribution is an
application of our technique to two verification domains where the underlying verification is
undecidable:

• Our first setting is the verification of dynamically manipulated data-structures against
rich logics that combine properties of structure, separation, arithmetic, and data. We
show how natural proof verification engines [68, 105], which are sound but incomplete
verification engines that translate a powerful undecidable separation logic called Dryad

44



to decidable logics, can be fit into our framework. Moreover, we implement a prototype
of such a verification engine on top of the program verifier Boogie [71] and demonstrate
that this prototype is able to fully automatically verify a large suite of benchmarks,
containing standard algorithms for manipulating singly and doubly linked lists, sorted
lists, as well as balanced and sorted trees.

• The second setting addresses the verification of programs against specifications with
universal quantification, which renders verification undecidable in general. In this
situation, automated verification engines commonly use a variety of bounded quantifier
instantiation techniques (such as E-matching, triggers, and model-based quantifier
instantiation) to replace universal quantification by conjunctions over a specific set of
terms. This soundly reduces satisfiability checking of the negated verification conditions
to a decidable theory. Based on such techniques, we implement our framework and we
show that it is able to effectively generate invariants that prove a challenging suite of
programs correct against universally quantified specifications.

3.2 AN INVARIANT SYNTHESIS FRAMEWORK FOR INCOMPLETE
VERIFICATION ENGINES

In this section, we develop our framework for synthesizing inductive invariants for incomplete
verification engines, using a counter-example guided inductive synthesis approach. We do this
in a setting where the hypothesis space consists of formulas that are Boolean combinations
of a fixed set of predicates P , which need not be finite for the general framework (although
we assume P to be a finite set of predicates when developing concrete learning algorithms
later). For the rest of this section, let us fix a program P that is annotated with assertions
(and possibly with some partial annotations describing pre-conditions, post-conditions, and
assertions). Moreover, we say that a formula α is weaker (stronger) than a formula β in a
logic L if `L β ⇒ α (`L α⇒ β) where `L ϕ means that ϕ is valid in L.
Figure 3.1 depicts our general framework of invariant synthesis when verification is unde-

cidable. We fix several parameters for our verification effort. First, let us assume a uniform
signature for logics in terms of constant symbols, relation symbols, functions, and types. For
simplicity of exposition, we use the same syntactic logic for the various logics U , D, B in our
framework as well as for the logic H used to express invariants.

Let us fix U as the underlying theory that is ideally needed for validating the verification
conditions that arise for the program; we presume validity of formulas in U is undecidable.
Since U is an undecidable theory, the engine will resort to sound approximations (e.g., using

45



Verification Engine

generate VCs in U

reduce VCs to D

extract NPI in B
D

solver

VC in D

D model

Invariant
Synthesizer

over
hypothesis
class H with
constraints

in BNPI in B

candidate
invariant
in HPartially annotated

program

all VCs are D-valid; program proven correct

H – the hypothesis class of invariants
U – the underlying theory of the program, assumed to be undecidable
D – the theory that the verification engine soundly reduces verification conditions

to; decidable and can produce models
B – the theory of propositional logic that the verification engine uses to communicate

to the invariant synthesis engine

Figure 3.1: A non-provability information (NPI) framework for invariant synthesis

bounded quantifier instantiations using mechanisms such as triggers [102], bounded unfolding
of recursive functions, or natural proofs [68, 105]) to reduce this logical task to a decidable
theory D. This reduction is assumed to be sound in the sense that if the resulting formulas
in D are valid, then the verification conditions are valid in U as well. If a formula is found
not valid in D, then we require that the logic solver for D returns a model for the negation of
the formula.1 Note that this model may not be a model for the negation of the formula in U .
Moreover, we fix a hypothesis class H for invariants consisting of positive Boolean com-

bination of predicates over a fixed set of predicates P. Note that considering only positive
formulas over P is not a restriction in general because one can always add negations of
predicates to P, thus effectively synthesizing any Boolean combination of predicates. The
restriction to positive Boolean formulas is in fact desirable as it allows restricting invariants to
not negate certain predicates, which is useful when predicates have intuitionistic definitions
(as several recursive definitions of heap properties do).

The invariant synthesis proceeds in rounds, where in each round the synthesizer proposes
invariants in H. The verification engine generates verification conditions in accordance to
these invariants in the underlying theory U . It then proceeds to translate them into the

1Note that our framework requires model construction in the theory D. Hence, incomplete logic solvers
for U that simply time out after some time threshold or search for a proof of a particular kind and give up
otherwise are not suitable candidates.

46



decidable theory D, and gives them to a solver that decides their validity in the theory D. If
the verification conditions are found to be D-valid, we have successfully proven the program
correct by virtue of the fact that the verification engine reduced verification conditions in a
sound fashion to D.
However, if the formula is found not to be D-valid, the solver returns a D-model for

its negation. The verification engine then extracts from this model certain non-provability
information (NPI), expressed as Boolean formulas in a Boolean theory B, which captures more
general reasons why the verification failed (the rest of this section is devoted to developing this
notion of non-provability information). This non-provability information is communicated to
the synthesizer, which then proceeds to synthesize a new conjecture invariant that satisfies
the non-provability constraints provided in all previous rounds.

In order for the verification engine to extract meaningful non-provability information, we
make the following natural assumption, called normality, which essentially states that the
engine can do at least some minimal Boolean reasoning (if a Hoare triple is not provable,
then Boolean weakenings of the precondition and Boolean strengthening of the post-condition
must also be unprovable):

Definition 3.1. A verification engine is normal if it satisfies two properties:
1. If the engine cannot prove the validity of the Hoare triple {α}s{γ} and `B δ ⇒ γ, then

it cannot prove the validity of the Hoare triple {α}s{δ}.

2. If the engine cannot prove the validity of the Hoare triple {γ}s{β} and `B γ ⇒ δ, then
it cannot prove the validity of the Hoare triple {δ}s{β}.

In Section 3.2.1, we now develop an appropriate language to communicate non-provability
constraints, which allow the learner to appropriately weaken or strengthen a future hypothesis.
It turns out that pure conjunctions and pure disjunctions over P, which we term CD-NPI
constraints (conjunctive/disjunctive non-provability information constraints), are sufficient
for this purpose. We also describe concretely how the verification engine can extract this
non-provability information from D-models that witness that negations of VCs are satisfiable.
Then, in Section 3.2.2, we show how to build learners for CD-NPI constraints by reducing
this learning problem to another, well-studied learning framework for invariants called ICE
learning. Section 3.2.3 illustrates our definitions on an example, and Section 3.2.4 argues the
soundness of our framework and guarantees of convergence.

47



3.2.1 Conjunctive/Disjunctive Non-provability Information

We assume that the underlying decidable theory D is stronger than propositional theory B,
meaning that every valid statement in B is valid in D as well. The reader may want to keep
the following as a running example where D is the decidable theory of uninterpreted functions
and linear arithmetic, say. In this setting, a formula is B-valid if, when treating atomic
formulas as Boolean variables, the formula is propositionally valid. For instance, f(x) = y ⇒
f(f(x)) = f(y) will not be B-valid though it is D-valid, while f(x) = y ∨ ¬(f(x) = y) is
B-valid.
To formally define CD-NPI constraints and their extraction from a failed verification at-

tempt, let us first introduce the following notation. For any U -formula ϕ, let approx(ϕ) denote
the D-formula that the verification engine generates such that the D-validity of approx(ϕ)
implies the U -validity of ϕ. Moreover, for any Hoare triple {α}s{β}, let V C({α}s{β}) denote
the verification condition in U corresponding to the Hoare triple that the verification engine
generates.
Let us now assume, for the sake of a simpler exposition, that the program has a single

annotation hole A where we need to synthesize an inductive invariant to prove the program
correct. Further, suppose the learner conjectures an annotation γ as an inductive invariant
for the annotation hole A, and the verification engine fails to prove the verification condition
corresponding to a Hoare triple {α}s{β}, where either α, β, or both could involve the syn-
thesized annotation. This means that the negation of approx(V C({α}s{γ})) is D-satisfiable
and the verification engine needs to extract non-provability information from a model of it.
To this end, we assume that every program snippet s has been augmented with a set of ghost
variables g1, . . . , gn that track the predicates p1, . . . , pn mentioned in the invariant (i.e., these
ghost variables are assigned the values of the predicates). The valuation ~v = 〈v1, . . . , vn〉 of
the ghost variables in the model before the execution of s and the valuation ~v′ = 〈v′1, . . . , v′n〉
after the execution of s can then be used to derive non-provability information, as we describe
shortly.

The type of non-provability information the verification engine extracts depends on where
the annotation appears in a Hoare triple {α}s{β}. More specifically, the synthesized annota-
tion might appear in α, in β, or in both. We now handle all three cases individually.

• Assume the verification of a Hoare triple of the form {α}s{γ} fails (i.e., the verification
engine cannot prove a verification condition where the pre-condition α is a user-
supplied annotation and the post-condition is the synthesized annotation γ). Then,
approx(V C({α}s{γ})) is not D-valid, and the decision procedure for D would generate
a model for its negation.

48



Since γ is a positive Boolean combination, the reason why ~v′ does not satisfy γ is
due to the variables mapped to false by ~v′, as any valuation extending this will not
satisfy γ. Intuitively, this means that the D-solver is not able to prove the predicates
in Pfalse = {pi | v′i = false}. In other words, {α}s{∨Pfalse} is unprovable (a witness to
this fact is the model of the negation of approx(V C({α}s{γ})) from which the values
~v′ are derived). Note that any invariant γ′ that is stronger than ∨Pfalse will result
in an unprovable verification condition due to the verification engine being normal.
Consequently we can choose χ = ∨

Pfalse as the weakening constraint, demanding that
future invariants should not be stronger than χ.

The verification engine now communicates χ to the synthesizer, asking it never to
conjecture in future rounds invariants γ′′ that are stronger than χ (i.e., such that
6`B γ′′ ⇒ χ).

• The next case is when a Hoare triple of the form {γ}s{β} fails to be proven (i.e., the
verification engine cannot prove a verification condition where the post-condition β is a
user-supplied annotation and the pre-condition is the synthesized annotation γ). Using
similar arguments as above, the conjunction η = ∧{pi | vi = true} of the predicates
mapped to true by ~v in the corresponding D-model gives a stronger precondition η

such that {η}s{α} is not provable. Hence, η is a valid strengthening constraint. The
verification engine now communicates η to the synthesizer, asking it never to conjecture
in future rounds invariants γ′′ that are weaker than η (i.e., such that 6`B η ⇒ γ′′).

• Finally, consider the case when the Hoare triple is of the form {γ}s{γ} and fails to
be proven (i.e., the verification engine cannot prove a verification condition where the
pre- and post-condition is the synthesized annotation γ). In this case, the verification
engine can offer advice on how γ can be strengthened or weakened to avoid this model.
Analogous to the two cases above, the verification engine extracts a pair of formulas
(η, χ), called an inductivity constraint, based on the variables mapped to true by ~v and
to false by ~v′. The meaning of such a constraint is that the invariant synthesizer must
conjecture in future rounds invariants γ′′ such that either 6`B η ⇒ γ′′ or 6`B γ′′ ⇒ χ

holds.

This leads to the following scheme, where γ denotes the conjectured invariant:
• When a Hoare triple of the form {α}s{γ} fails, the verification engine returns the
B-formula ∨i|v′

i=false pi as a weakening constraint.

• When a Hoare triple of the form {γ}s{β} fails, the verification engine returns the
B-formula ∧i|vi=true pi as a strengthening constraint.

49



• When a Hoare triple of the form {γ}s{γ} fails, the verification engine returns the pair
(∧i|vi=true pi,

∨
i|v′

i=false pi) of B-formulas as an inductivity constraint.
It is not hard to verify that the above formulas are proper strengthening and weakening

constraints in the sense that any inductive invariant must satisfy these constraints. This
motivates the following form of non-provability information.

Definition 3.2 (CD-NPI Samples). Let P be a set of predicates. A CD-NPI sample (short
for conjunction-disjunction-NPI sample) is a triple S = (W,S, I) consisting of
• a finite set W of disjunctions over P (weakening constraints);

• a finite set S of conjunctions over P (strengthening constraints); and

• a finite set I of pairs, where the first element is a conjunction and the second is a
disjunction over P (inductivity constraints).

An annotation γ is consistent with a CD-NPI sample S = (W,S, I) if 6`B γ ⇒ χ for each
χ ∈ W , 6`B η ⇒ γ for each η ∈ S, and 6`B η ⇒ γ or 6`B γ ⇒ χ for each (η, χ) ∈ I.

A CD-NPI learner is an effective procedure that synthesizes, given an CD-NPI sample,
an annotation γ consistent with the sample. In our framework, the process of proposing
candidate annotations and checking them repeats until the learner proposes a valid annotation
or it detects that no valid annotation exists (e.g., if the class of candidate annotations is
finite and all annotations are exhausted). We comment on using an CD-NPI learner in this
iterative fashion in the next section.

3.2.2 Building CD-NPI Learners

Let us now turn to the problem of building efficient learning algorithms for CD-NPI
constraints. To this end, we assume that the set of predicates P is finite.
Roughly speaking, the CD-NPI learning problem is to synthesize annotations that are

positive Boolean combinations of predicates in P and that are consistent with a given
CD-NPI sample. Though this is a learning problem where samples are formulas, in this
section we reduce CD-NPI learning to a learning problem from data. In particular, we show
that CD-NPI learning reduces to the ICE learning framework for learning positive Boolean
formulas. The latter is a well-studied framework, and the reduction allows us to use efficient
learning algorithms developed for ICE learning in order to build CD-NPI learners.

We now first recap the ICE-learning framework and then reduce CD-NPI learning to ICE
learning. Finally, we briefly sketch how the popular Houdini algorithm can be seen as an

50



ICE learning algorithm, which, in turn, allows us to use Houdini as an CD-NPI learning
algorithm.

3.2.2.1 The ICE learning framework

Although the ICE learning framework [45] is a general framework for learning inductive
invariants, we here consider the case of learning Boolean formulas. To this end, let us fix a
set B of Boolean variables. Moreover, let H be a subclass of positive Boolean formulas over
B (i.e., Boolean combinations of variables from B without negation). This class, called the
hypothesis class, specifies the admissible solutions to the learning task.
The objective of the (passive) ICE learning algorithm is to learn a formula in H from

positive examples, negative examples, and implication examples. More formally, if V is the
set of valuations v : B → {true, false} (mapping variables in B to true or false), then an ICE
sample is a triple S = (S+, S−, S⇒) where S+ ⊆ V is a set of positive examples, S− ⊆ V is a
set of negative examples, and S⇒ ⊆ V × V is a set of implications. Note that positive and
negative examples are concrete valuations of the variables in B, and the implication examples
are pairs of such concrete valuations.

A formula ϕ is said to be consistent with an ICE sample S if it satisfies the following three
conditions:2 v |= ϕ for each v ∈ S+, v 6|= ϕ for each v ∈ S−, and v1 |= ϕ implies v2 |= ϕ, for
each (v1, v2) ∈ S⇒.
In algorithmic learning theory, one distinguishes between passive learning and iterative

learning. The former refers to a learning setting in which a learning algorithm is confronted
with a finite set of data and has to learn a concept that is consistent with this data. Using
our terminology, the passive ICE learning problem for a hypothesis class H is then: “given
an ICE sample S, find a formula in H that is consistent with S”. Recall that we here require
the learning algorithm to learn positive Boolean formulas, which is stricter than the original
ICE framework [45].
Iterative learning, on the other hand, is the iteration of passive learning where new data

is added to the sample from one iteration to the next. In a verification context, this new
data is generated by the verification engine in response to incorrect annotations and used to
guide the learning algorithm towards an annotation that is adequate to prove the program.
To reduce our learning framework to ICE learning, it is therefore sufficient to reduce the
(passive) CD-NPI learning problem described above to the passive ICE learning problem.
We do this next.

2In the following, |= denotes the usual satisfaction relation.

51



3.2.2.2 Reduction of Passive CD-NPI Learning to Passive ICE Learning

Let H be a subclass of positive Boolean formulas. We reduce the CD-NPI learning problem
for H to the ICE learning problem for H. The main idea is to (a) treat each predicate p ∈ P
as a Boolean variable for the purpose of ICE learning and (b) to translate a CD-NPI sample G
into an equi-consistent ICE sample SS, meaning that a positive Boolean formula is consistent
with S if and only if it is consistent with SS. Then, learning a consistent formula in the
CD-NPI framework reduces to learning a consistent formula in the ICE learning framework.
The following lemma will us help translate between the two frameworks. Its proof is

straightforward and follows from the following observation about any positive formula α: if
a valuation v sets a larger subset of variables to true than v′ does and v′ |= α, then v |= α

holds as well.

Lemma 3.1. Let v be a valuation of P and α be a positive Boolean formula over P. Then,
the following holds:

• v |= α if and only if `B (∧p|v(p)=true p) ⇒ α (and, therefore, v 6|= α if and only if
6`B (∧p|v(p)=true p)⇒ α).

• v |= α if and only if 6`B α⇒ (∨p|v(p)=false p).

This motivates our translation, which relies on two functions, c and d. The function c

translates a conjunction ∧ J , where J ⊆ P , into the valuation

c
(∧

J
)

= v with v(p) = true if and only if p ∈ J. (3.1)

The function d, on the other hand, translates a disjunction ∨ J , where J ⊆ P is a subset
of propositions, into the valuation

d
(∨

J
)

= v with v(p) = false if and only if p ∈ J. (3.2)

By substituting v in Lemma 3.1 with c(∧ J) and d(∨ J), respectively, one immediately
obtains the following result.

Lemma 3.2. Let J ⊆ P and α be a positive Boolean formula over P. Then, the following
holds:

• c
(∧

J
)
6|= α if and only if 6`B

∧
J ⇒ α, and

• d
(∨

J
)
|= α if and only if 6`B α⇒

∨
J .

52



Based on the functions c and d, the translation of a CD-NPI sample into an equi-consistent
ICE sample is as follows.

Definition 3.3. Given a CD-NPI sample S = (W,S, I), the ICE sample SS = (S+, S−, S⇒)
is defined by

• S+ =
{
d(∨ J) | ∨ J ∈ W}

;

• S− =
{
c(∧ J) | ∧ J ∈ S}; and

• S⇒ =
{(
c(∧ J1), d(∨ J2)

)
| (∧ J1,

∨
J2) ∈ I

}
.

By virtue of the lemma above, we can now establish the correctness of the reduction from
the CD-NPI learning problem to the ICE learning problem as follows.

Theorem 3.1. Let S = (W,S, I) be a CD-NPI sample, SS = (S+, S−, S⇒) the ICE sample
as in Definition 3.3, γ a positive Boolean formula over P. Then, γ is consistent with S if
and only if γ is consistent with SS.

Proof. Let S = (W,S, I) be an CD-NPI sample, and let SS = (S+, S−, S⇒) the ICE sample
as in Definition 3.3. Moreover, let γ be a positive Boolean formula. We prove Theorem 3.1
by considering each weakening, strengthening, and inductivity constraint together with their
corresponding positive, negative, and implication examples individually.

• Pick a weakening constraint ∨ J ∈ W , and let v ∈ S+ with v = d(∨ J) be the
corresponding positive sample. Moreover, assume that γ is consistent with S and, thus,
6`B γ ⇒

∨
J . By Lemma 3.2, this is true if and only if d

(∨
J
)
|= γ. Hence, v |= γ.

Conversely, assume that γ is consistent with S. Thus, v |= γ, which means d
(∨

J
)
|= γ.

By Lemma 3.2, this is true if and only if 6`B γ ⇒
∨
J .

• Pick a strengthening constraint ∧ J ∈ S, and let v ∈ S− with v = c(∧ J) be the
corresponding negative sample. Moreover, assume that γ is consistent with S and,
thus, 6`B

∧
J ⇒ γ. By Lemma 3.2, this is true if and only if c

(∧
J
)
6|= γ. Hence, v 6|= γ.

Conversely, assume that γ is consistent with S. Thus, v 6|= γ, which means c
(∧

J
)
6|= γ.

By Lemma 3.2, this is true if and only if 6`B
∧
J ⇒ γ.

• Following the definition of implication, we split the proof into two cases, depending
on whether 6`B

∧
J ⇒ γ or 6`B γ ⇒ ∨

J (and v1 6|= γ or v2 |= γ for the reserve
direction). However, the proof of the former case uses the same arguments as the proof

53



for strengthening constraints, while the proof of the latter case uses the same arguments
as the proof for weakening constraints. Hence, combining both proofs immediately
yields the claim. Q.E.D.

3.2.2.3 ICE learners for Boolean formulas

The reduction above allows us to use any ICE learning algorithm in the literature that
synthesizes positive Boolean formulas. As we have mentioned earlier, we can add negations
of predicates as first-class predicates and, hence, synthesize invariants over the more general
class of all Boolean combinations as well.
The problem of passive ICE learning for one round, synthesizing a formula that satisfies

the ICE sample, can usually be achieved efficiently and in a variety of ways. However, the
crucial aspect is not the complexity of learning in one round but the number of rounds
it takes to converge to an adequate invariant that proves the program correct. When the
set P of candidate predicates is large (hundreds in our experiments), since the number of
Boolean formulas over P is doubly exponential in n = |P|, building an effective learner is not
easy. However, there is one class of formulas that are particularly amenable to efficient ICE
learning: conjunctions of predicates over P. For this specific case, ICE learning algorithms
exist that promise learning the invariant (provided one exists expressible as a conjunct over
P) in (n+1) rounds. Note that this learning is essentially finding an invariant in a hypothesis
class H of size 2n in (n+1) rounds.

Houdini [70] is such a learning algorithm for conjunctive formulas. Though it is typically
seen as a particular way to synthesize invariants, it is a prime example of an ICE learner
for conjuncts, as described in the work by Garg et al. [45]. In fact, Houdini is similar to
the classical PAC learning algorithm for conjunctions [78], but extended to the ICE model.
The time Houdini spends in each round is polynomial in the size of the sample, and it
is guaranteed to converge to an invariant in at most (n+1) rounds (or reports that no
conjunctive invariant over P exists). In our applications, we use this ICE learner to build a
CD-NPI learner for conjunctions.

3.2.3 An Illustrative Example

Figure 3.2 illustrates an example program of the Software Verification Competition [110]
that given an injective, surjective function A returns the inverse B of the function A. The
post-condition of this program expresses that the function B is injective. To prove this
program correct, one needs to specify adequate invariants at the loop header and before the

54



int A[ ], B[ ];
int N; axiom (N > 0);
bool inImage(int i) { return true; }

procedure inverse()
requires (∀x, y. 0 ≤ x < y < N =⇒ A[x] 6= A[y]); // A is injective
requires (∀x. 0 ≤ x < N ∧ inImage(x) =⇒ (∃y. 0 ≤ y < N ∧A[y] = x)); // A is surjective
ensures (∀x, y. 0 ≤ x < y < N =⇒ B[x] 6= B[y]); // B is injective
{

int i = 0;
while (i < N)
SynthesizeInv(∀x. 0 ≤ x < i =⇒ B[A[x]] = x); // b1
{

B[A[i]] = i;
i = i + 1;

}
SynthesizeInv(∀x. 0 ≤ x < N =⇒ A[B[x]] = x, // b2

∀x. 0 ≤ x < N ∧ inImage(x) =⇒ A[B[x]] = x); // b3
return;

}

Figure 3.2: Synthesizing invariants for the program that constructs an inverse B of an
injective, surjective function A [110].

return statement in function inverse in the program. We wish to synthesize these invariants.
For simplicity, let us assume we are provided with a small set of predicates that serve as the
basic building blocks for the invariants to be synthesized: b1 at the loop header and b2, b3

before the return statement. Our task, therefore, is to synthesize adequate invariants for this
program over these predicates.3

Clearly, the verification conditions of this program are undecidable. In fact, the constant
Boolean function inImage is crucially required to validate certain verification conditions by
triggering appropriate quantifier instantiations in the surjectivity condition. Let us now
assume that the learner conjectures the loop invariant γL = b1 and the invariant at the return
statement γR = b2 ∧ b3. Moreover, suppose that that the verification condition φ along the
path from the loop exit to the return statement, though valid in the undecidable theory U (cf.
Figure 3.1), is not provable in the decidable theory D (one that has instantiated quantifiers
with ground-terms). Thus, the D-solver returns a model that captures this non-provability
information.
The verification engine now gleans this model—it looks for the values assigned to the
3In general, one starts with a much larger set of candidate predicates that are automatically generated

using program/specification-dependent heuristics.

55



predicate variables in the model and constructs a CD-NPI constraint for the learner to learn
from. For this particular verification condition, the verification engine extracts a pair of
formulas (η, χ) with η = b1 and χ = b2 and communicates this as an inductivity constraint
to the learner. Intuitively, this constraint means that the verification condition obtained
by substituting γL with η and γR with χ is itself not provable. In subsequent rounds, the
learner thus needs to conjecture only those invariants where γL is not weaker than η (i.e.,
6`B b1 ⇒ γL) or γR is not stronger than χ (i.e., 6`B γR ⇒ b2).

The learner works by reducing the CD-NPI passive learning problem to ICE learning over a
sample over the given set of predicates. Concretely, the inductivity constraint specified above
that captures the non-provability of the verification condition φ in the theory D is reduced
to an implication constraint ((1, 0, 0), (1, 0, 1)) in the ICE setting, where each datapoint in
the ICE sample has values for the predicates b1, b2, and b3, respectively. In the next round,
let us assume the learner conjectures the invariants γL = b1 and γR = b3. Note that these
conjectures satisfy both the ICE constraints and the CD-NPI constraints. In this case, it
turns out that the verification conditions along all program paths using these invariants can
be proved valid in the theory D. As a result, our invariant synthesis procedure terminates
with these as adequate inductive invariants.

3.2.4 Correctness and Convergence of the Invariant Learning Framework

To state the main result of this chapter, let us first assume that the set P of predicates is
finite. We comment on the case of infinitely many predicates at the end of this section.

Theorem 3.2. Assume a normal verification engine for a program P to be given. Moreover,
let P be a finite set of predicates over the variables in P and H a hypothesis class consisting
of positive Boolean combinations of predicates in P. If there exists an annotation in H that
the verification engine can use to prove P correct, then the CD-NPI framework described in
Section 3.2.1 is guaranteed to converge to such an annotation in finite time.

Proof. The proof proceeds in two steps. First, we show that a normal verification engine is
honest, meaning that the non-provability information returned by such an engine does not rule
out any adequate and provable annotation. Second, we show that any consistent learner (i.e.,
a learner that only produces consistent hypotheses), when paired with an honest verification
engine, makes progress from one round to another. Finally, we combine both results to show
that the framework eventually converges to an adequate and provable annotation.

56



Honesty of the verification engine We show honesty of the verification engine by
contradiction.

• Suppose that the verification replies to a candidate invariant γ proposed by the learner
with a weakening constraint χ because it could not prove the validity of the Hoare
triple {α}s{γ}. This effectively forces any future conjecture γ′ to satisfy 6`B γ′ ⇒ χ.

Now, suppose that there exists an invariant δ such that `B δ ⇒ χ and the verification
engine can prove the validity of {α}s{δ} (in other words, the adequate invariant δ is
ruled out by the weakening constraint χ). Due to the fact that the verification engine
is normal (in particular, by contraposition of Part 1 of Definition 3.1), this implies
that the verification engine can also prove the validity of {α}s{χ}. However, this is a
contradiction to χ being a weakening constraint.

• Suppose that the verification engine replies to a candidate invariant γ proposed by
the learner with a strengthening constraint η because it could not prove the validity
of the Hoare triple {γ}s{β}. This effectively forces any future conjecture γ to satisfy
6`B η ⇒ γ′.

Now, suppose that there exists an invariant δ such that `B η ⇒ δ and the verification
engine can prove the validity of {δ}s{β} (in other words, the adequate invariant δ is
ruled out by the weakening constraint η). Due to the fact that the verification engine
is normal (in particular, by contraposition of Part 2 of Definition 3.1), this implies
that the verification engine can also prove the validity of {η}s{β}. However, this is a
contradiction to η being a strengthening constraint.

• Combining the arguments for weakening and strengthening constraints immediately
results in a contradiction for the case of inductivity constraints as well.

Progress of the learner Now suppose that the learning algorithm is consistent, meaning
that it always produces an annotation that is consistent with the current sample. Moreover,
assume that the sample in iteration i ∈ N is Si and the learner produces the annotation γi.
If γi is inadequate to prove the program correct, the verification engine returns a constraint
c. The learner adds this constraint to the sample, obtaining the sample Si+1 of the next
iteration.

Since verification with γi failed, which is witnessed by c, we know that γi is not consistent
with c. The next conjecture γi+1, however, is guaranteed to be consistent with Si+1 (which
contains c) because the learner is consistent. Hence, γi and γi+1 are semantically different.

57



Using this argument repeatedly shows that each annotation γi that a consistent learner has
produced is semantically different from any previous annotation γj for j < i.

Convergence We first make two observations.

1. The number of semantically different hypotheses in the hypothesis space H is finite
because the set P is finite. Recall thatH is the class of all positive Boolean combinations
of predicates in P .

2. Due to the honesty of the verification engine, every annotation that the verification
engine can use to prove the program correct is guaranteed to be consistent with any
sample produced during the learning process.

Now, suppose that there exists an annotation that the verification engine can use to
prove the program correct. Since the learner is consistent (implying that it is honest), all
conjectures produced during the learning process are semantically different. Thus, the learner
will at some point have exhausted all incorrect annotations in H (due to Observation 1).
However, there exists at least one annotation that the verification engine can use to prove
the program correct. Moreover, any such annotation is guaranteed to be consistent with the
current sample (due to Observation 2). Thus, the annotation conjectured next is necessarily
one that the verification engine can use to prove the program correct. Q.E.D.

Under certain realistic assumptions on the CD-NPI learning algorithm, Theorem 3.2
remains true even if the number of predicates is infinite. An example of such an assumption is
that the learning algorithm always conjectures a smallest consistent annotation with respect
to some fixed total order on H. In this case, one can show that such a learner will at some
point have proposed all inadequate annotation up to the smallest annotation the verification
engine can use to prove the program correct. It will then conjecture this annotation in the
next iteration. A correctness proof of this informal argument in a more general setting, called
abstract learning frameworks for synthesis, has been given by Löding, Madhusudan, and
Neider [97].

3.3 LEARNING INVARIANTS THAT AID NATURAL PROOFS FOR HEAP
REASONING

We now develop an instantiation of our learning framework for verification engines based
on natural proofs for heap reasoning [68, 69].

58



3.3.1 Background: Natural Proofs and Dryad

Dryad [68, 69] is a dialect of separation logic that allows expressing second order properties
using recursive functions and predicates. Dryad has a few restrictions, such as disallowing
negations inside recursive definitions and in sub-formulas connected by spatial conjunctions
(see Pek, Qiu, and Madhusudan [68]). However, it is expressive enough to define a variety of
data-structures (singly and doubly linked lists, sorted lists, binary search trees, AVL trees,
maxheaps, treaps) and recursive definitions over them that map to numbers (length, height,
etc.). Dryad also allows expressing properties about the data stored within the heap (the
multiset of keys stored in lists, trees, etc.).
Natural proofs [68, 69] is a sound but incomplete strategy for deciding satisfiability of

Dryad formulas. The first step the natural proof verifier performs is to convert all predicates
and functions in a Dryad-annotated program to classical logic. This translation introduces
heaplets (modeled as sets of locations) explicitly in the logic. Furthermore, it introduces
assertions demanding that the access of each method is contained to the heaplet implicitly
defined by its pre-condition (taking into account newly allocated or freed nodes) and the
modified heaplet at the end of the program precisely matches the heaplet implicitly defined
by the post-condition.
In the second step, the natural proof verifier applies the following three transformations

to the program: (a) it abstracts all recursive definitions on the heap using uninterpreted
functions and introduces finite-depth unfoldings of these definitions at every place in the code
where locations are dereferenced, (b) it model heaplets and other sets using the decidable
theory of maps, and (c) it insert frame reasoning explicitly in the code, which allows the
verifier to derive that certain properties continue to hold across a heap update (or function
call) using the heaplet that is being modified. Subsequently, the natural proof verifier
translates the transformed program to Boogie [71], an intermediate verification language
that handles proof obligations using automatic theorem provers (typically SMT solvers).
To perform both steps automatically, we used the tool VCDryad [68], which extends

VCC [100] and operates on heap-manipulating C programs. The result is a Boogie program
with no recursive definitions, where all verification conditions are in decidable logics, and
where a standard SMT solver, such as Z3 [88], can return models when formulas are satisfiable.
The program in question can then be verified if supplied with correct inductive loop-invariants
and adequate pre/post-conditions. We refer the reader to the work on Dryad [69] and
VCDryad [68] for more details.

59



3.3.2 Learning Heap Invariants

We have implemented a prototype4 that consists of the entire VCDryad pipeline, which
takes C programs annotated in Dryad and converts them to Boogie programs via the
natural proof transformations described above. We then apply our transformation to the ICE
learning framework and pair Boogie with the ICE learning algorithm Houdini [70] that
learns conjunctive invariants over a finite set of predicates (we describe shortly how these
predicates are generated). After these transformations, Boogie satisfies the requirements on
verification engines of our framework.

Given the Dryad definitions of data structures, we automatically generate a set P of
predicates, which serve as the basic building blocks of our invariants. The predicates are
generated from generic templates, which are instantiated using all combinations of program
variables that occur in the program being verified. Figure 3.3 presents these templates in
detail.
Our templates cover a fairly exhaustive set of predicates. This includes properties of the

store (equality of pointer variables, equality and inequalities between integer variables, etc.),
shape properties (singly and doubly linked lists and list segments, sorted lists, trees, binary
search trees, AVL trees, treaps, etc.), and recursive definitions that map data structures
to numbers, involving arithmetic relationships and set relationships (keys/data stored in
a structure, lengths of lists and list segments, height of trees). In addition, our templates
include predicates describing heaplets of various structures, which involve set operations,
disjointness, and equalities. The structures and predicates are extensible, of course, to any
recursive definition expressible in Dryad.
The templates are grouped into three categories, roughly in increasing complexity. Pred-

icates of Category 1 involve shape-related properties, predicates of Category 2 involve
properties related to the keys stored in the data-structure, and predicates of Category 3
involve size-related properties (lengths of lists and heights of trees). Given a program to
verify and its annotations, we choose the category of templates depending on whether the
specification refers to shape only, shapes and keys, or shapes, keys, and sizes (choosing a
category includes the predicates of lower category as well). Then, predicates are automatically
generated by instantiating the templates with all (combinations of) program variables. This
approach gives us a fairly fine-grained control over the set of predicates used in the verification
process.

4Our prototype as well as the benchmarks used to reproduce the results presented below are publicly
available on figshare [111].

60



x, y ∈ PointerVars ~x, ~y, ~z ∈ PointerVars∗ pf ∈ PointerFields df ∈ DataFields
i, j ∈ IntegerVars ∪ {0, IntMax, IntMin}

listshape(~x) := LinkedList(x1) | DoublyLinkedList(x1) | SortedLinkedList(x1)
| LinkedListSeg(x1, x2) | DoublyLinkedListSeg(x1, x2)

treeshape(x) := BST (x) | AVLtree(x) | Treap(x)
shape(~x) := listshape(~x) | treeshape(~x)

size(~x) := listshape_length(~x) | treeshape_height(~x)

Category 1
x = nil x = y
x 6= nil x 6= y
shape(~x) x.pf = nil
x ∈ shape_heaplet(~y) x.pf 6= nil
x /∈ shape_heaplet(~y) x.pf = y
shape_heaplet(~x) ∩ shape_heaplet(~y) = ∅ x.pf 6= y

Category 2
i ∈ shape_key_set(~x) x.df = i
i /∈ shape_key_set(~x) x.df 6= i
shape_key_set(~x) ≤set {i} x.df ≤ i
shape_key_set(~x) ≥set {i} x.df ≥ i
shape_key_set(~x) ≤set {y.df } x.df = y.df
shape_key_set(~x) ≥set {y.df } x.df 6= y.df
shape_key_set(~x) = shape_key_set(~y) x.df ≤ y.df
shape_key_set(~x) ≤set shape_key_set(~y) x.df ≥ y.df
shape_key_set(~x) ≥set shape_key_set(~y)
shape_key_set(~x) = shape_key_set(~y) ∪ shape_key_set(~z)

Category 3
size(~x) = i− j size(~x) = i
size(~x)− size(~y) = i size(~x) ≤ i
size(~x)− size(~y) = i− j size(~x) ≥ i

Figure 3.3: Templates of Dryad predicates. The operator ≤set denotes comparison between
integer sets, where A ≤set B if and only if x ≤ y holds for all x ∈ A and y ∈ B. The
operator ≥set is similarly defined. Shape properties such as LinkedList, AVLtree, and so
on are recursively defined in Dryad (not shown here) and are extensible to any class of
Dryad-definable shapes. Similarly, the definitions related to keys stored in a data structure
and the sizes of data structures also stem from recursive definitions in Dryad.

61



3.3.3 Benchmarks

We have evaluated our prototype on ten benchmark suits that contain standard algorithms
on dynamic data structures, such as searching, inserting, or deleting items in lists and trees.
These benchmarks were taken from the following sources:

1. GNU C Library(glibc) singly/sorted linked lists;
2. GNU C Library(glibc) doubly linked lists;
3. OpenBSD SysQueue;
4. GRASShopper [112] singly linked lists;
5. GRASShopper [112] doubly linked lists;
6. GRASShopper [112] sorted linked lists;
7. VCDryad [68] sorted linked lists;
8. VCDryad [68] binary search trees, AVL trees, and treaps;
9. AFWP [113] singly/sorted linked lists; and
10. ExpressOS [114] MemoryRegion.

The specifications for these programs generally checks for their full functional correctness,
such as preserving or altering shapes of data structures, inserting or deleting keys, filtering
or finding elements, as well as sortedness of elements. The specifications, hence, involve
separation logic with arithmetic as well as recursive definitions that compute numbers (such
as lengths and heights), data-aggregating recursive functions (such as multisets of keys stored
in the data structures), and complex combinations of these properties (e.g., to specify binary
search trees, AVL trees, and treaps). All programs are annotated in Dryad, and checking
validity of the resulting verification conditions is undecidable.

From these benchmark suites, we first picked all programs that contained iterative loops and
erased the user-provided loop invariants. We also selected some programs that were purely
recursive and where the contract for the function had manually been strengthened to make
the verification succeed. We weakened these contracts to only state the specification (typically
by removing formulas in the post-conditions of recursively called functions) and introduced
annotation holes instead. The goal was to synthesize strengthenings of these contracts that
allow proving the program correct. We also chose five straight-line programs, deleted their
post-conditions, and evaluated whether our prototype was able to learn post-conditions for
them (since our conjunctive learner learns the strongest invariant expressible as a conjunct,
we can use our framework to synthesize post-conditions as well). In total, we obtained 82
routines.
After removing annotations from the benchmarks, we automatically inserted appropriate

predicates over which to build invariants and contracts as described above. For all benchmark

62



suits, conjunctions of these predicates were sufficient to prove the programs correct.

3.3.4 Experimental Results

We performed all experiments in a virtual machine running Ubuntu 16.04.1 on a single core
of an Intel Core i7-7820HK 2.9GHz CPU with 2GB memory. The box plots in Figure 3.4
summarize the results of this empirical evaluation aggregated by benchmark suite, specifically
the time required to verify the programs, the number of automatically inserted base predicates
(i.e., |P|), and the number of iterations in the learning process. Each box in the diagrams
shows the lower and upper quartile (left and right border of the box, respectively), the
median (line within the box), as well as the minimum and maximum (left and right whisker,
respectively).

Our prototype was successful in learning invariants and contracts for all 82 programs. The
fact that the median time for a great majority of benchmark suits is less than 10 s shows that
our technique is extremely effective in finding inductive Dryad invariants. We observe that
despite many examples starting with hundreds of base predicates, which suggests a worst-case
complexity of hundreds of iterations, the learner was able to learn with much fewer iterations
and the number of predicates in the final invariant is small. This shows that non-provability
information of our framework provide much more information than the worst-case suggests.
To the best of our knowledge, our prototype is currently the only tool able of fully

automatically verifying these challenging benchmark suits. We must emphasize, however,
that there are subsets of these benchmarks that can be verified by reformulating verification
problem in decidable fragments of separation logic—we refer the reader to the related work
in Section 3.5 for a survey of such work. Our goal in this evaluation, however, is not to
compete with other, mature tools on a subset of benchmarks, but to measure the efficacy of
our proposed CD-NPI-based invariant synthesis framework on the complete benchmark set.

3.4 LEARNING INVARIANTS IN THE PRESENCE OF BOUNDED QUANTIFIER
INSTANTIATION

Software verification must deal with quantification in numerous application domains.
For instance, quantifiers are often needed for axiomatizing theories that are not already
equipped with decision procedures, for specifying properties of unbounded data structures
and dynamically allocated memory, as well as for defining recursive properties of programs.
For instance, the power of two function can be axiomatized using quantifiers:

63



Benchmark suite 1 2 3 4 5 6 7 8 9 10
Number of programs 16 9 3 8 8 11 3 11 9 4

Max. category of templates 3 3 1 1 1 2 2 3 2 1

10−1 100 101 102 103

1
2
3
4
5
6
7
8
9
10

Time in s
Be

nc
hm

ar
k
su
ite

101 102
Iterations

101 102 103

1
2
3
4
5
6
7
8
9
10

Base predicates |P|

Be
nc
hm

ar
k
su
ite

100 101 102

Final predicates |Inv|

Figure 3.4: Aggregated experimental results of the Dryad benchmarks.

pow2(0) = 1 ∧ ∀n ∈ N : n > 0⇒ pow2(n) = 2 · pow2(n− 1). (3.3)

Despite the fact that various important first-order theories are undecidable (e.g., the first-
order theory of arithmetic with uninterpreted functions), modern SMT solvers implement
a host of heuristics to cope with quantifier reasoning. Quantifier instantiation, including
pattern-based quantifier instantiation (e.g., E-matching [103]) and model-based quantifier
instantiation [104], are particularly effective heuristics in this context. The key idea of
instantiation-based heuristics is to instantiate universally quantified formulas with a finite
number of ground terms and then check for validity of the resulting quantifier-free formulas
(whose theory needs to be decidable). The exact instantiation of ground terms varies from

64



method to method, but most instantiation-based heuristics are necessarily incomplete in
general due to the undecidability of the underlying decision problems.

We can apply invariant synthesis framework for verification engines that employ quantifier
instantiation in the following way. Assume that U is an undecidable first-order theory
allowing uninterpreted functions and that D is its decidable quantifier-free fragment. Then,
quantifier instantiation can be seen as a transformation of a U-formula ϕ (potentially
containing quantifiers) into a D-formula approx(ϕ) in which all existential quantifiers have
been eliminated (e.g., using skolemization) and all universal quantifiers have been replaced
by finite conjunctions over ground terms.5 This means that if the D-formula approx(ϕ) is
valid, then the U -formula ϕ is valid as well. On the other hand, if approx(ϕ) is not valid, one
cannot deduce any information about the validity of ϕ. However, a D-model of approx(ϕ)
can be used to derive non-provability information as described in Section 3.2.1.

3.4.1 Benchmarks

Our benchmark suite consists of twelve slightly simplified programs from IronFleet [115]
(provably correct distributed systems), the Verified Software Competition [110], Expres-
sOS [114] (a secure operating system for mobile devices), and tools for sparse matrix multipli-
cation [116]. In these programs, quantifiers are used to specify recursively defined predicates,
such as power(n,m) and sum(n), as well various array properties, such as no duplicate
elements, periodic properties of array elements, and bijective (injective and surjective) maps.
All these specifications are undecidable in general. In particular, the array specifications fall
outside of the decidable array property fragment [117] because they involve strict comparison
between universally quantified index variables, array accesses in the index guard, nested array
accesses (e.g., a1[a2[i]]), arithmetic expressions over universally quantified index variables,
and alternation of universal and existential quantifiers.
From this benchmark suite, we erased the user-defined loop invariants and generated

a set of predicates that serve as the building blocks of our invariants. To this end, we
used the pre/post-conditions of the program being verified as templates from which the
actual predicates were generated—as in the case of Dryad benchmarks, the templates
were instantiated using all combinations of program variables that occur in the program.
Additionally, we generated predicates for octagonal constraints over the integer variables
in the programs (i.e., relations between two integer variables of the form ±x ± y ≤ c).
For programs involving arrays, we also generated octagonal constraints over array access
expressions that appear in the program.

5Quantifier instantiation is usually performed iteratively, but we here abstract away from this fact.

65



Program |P| # Iterations |Inv| Time in s
inverse 414 126 73 9.04
power2 109 55 34 2.10
powerN 160 60 31 13.52
recordArraySplit 1264 49 51 57.46
recordArrayUnzip 222 17 25 0.84
removeDuplicates 280 67 86 4.43
setFind 492 74 136 2.76
setInsert 556 73 188 6.70
sparseMatrixGen 816 278 90 22.07
sparseMatrixMul 768 313 91 14.49
sum 128 40 22 1.02
sumMax 192 61 45 4.31

Table 3.1: Experimental results of the quantifier instantiation benchmarks. The column |P|
refer to the number of automatically inserted base predicates, the column # Iterations to
the number of iterations of the teacher and learner, and the column |Inv| to the number of
predicates in the inferred invariant.

3.4.2 Experimental Results

We have implemented a prototype based on Boogie [71] and Z3 [88] as the verification
engine and Houdini [70] as a conjunctive ICE learning algorithm. As in the case of the
Dryad benchmarks, all experiments were conducted in a virtual machine running Ubuntu
16.04.1 on a single core of an Intel Core i7-7820HK 2.9GHz CPU with 2GB memory. The
results of these experiments are listed in Table 3.1.

As can be seen from this table, our prototype was effective in finding inductive invariants
and was able to prove each program correct in less than one minute (in 75 % of the programs
in less than 10 s). Despite having hundreds of base predicates in many examples, which in
turn suggests a worst-case complexity of hundreds of rounds, the learner was able to learn
an inductive invariant with much fewer rounds. As in the case of the Dryad benchmarks,
the non-provability information provided by the verification engine provided much more
information than the worst-case suggests.

3.5 RELATED WORK

Techniques for invariant synthesis include abstract interpretation [118], interpolation [107],
IC3 [108], predicate abstraction [119], abductive inference [120], as well as synthesis algorithms
that rely on constraint solving [121, 122, 123]. Complementing them are data-driven invariant

66



synthesis approaches that are based on machine learning. Examples include techniques that
learn likely invariants, such as Daikon [124], and techniques that learn inductive invariants,
such as Houdini [70], ICE [45], and Horn-ICE [125, 126]. The latter typically requires a
teacher that can generate counter-examples if the conjectured invariant is not adequate or
inductive. Classically, this is possible only when the verification conditions of the program
fall in decidable logics. In this chapter, we investigate data-driven invariant synthesis for
incomplete verification engines and show that the problem can be reduced to ICE learning if
the learning algorithm learns from non-provability information and produces hypotheses in a
class that is restricted to positive Boolean formulas over a fixed set of predicates. Data-driven
synthesis of invariants has regained recent interest [45, 47, 67, 127, 128, 129, 130, 131, 132, 133],
and our work addresses an important problem of synthesizing invariants for programs whose
verification conditions fall in undecidable fragments.

Our application to learning invariants for heap-manipulating programs builds upon
Dryad [68, 69], and the natural proof technique line of work for heap verification de-
veloped by Qiu et al. Techniques, similar to Dryad, for automated reasoning of dynamically
manipulated data structure programs have also been proposed in [106, 134]. However, unlike
our current work, none of these works synthesize heap invariants. Given invariant annotations
in their respective logics, they provide procedures to validate if the verification conditions are
valid. There has also been a lot of work on synthesizing invariants for separation logic using
shape analysis [135, 136, 137]. However, most of these techniques are tailored for memory
safety and shallow properties rather than rich properties that check full functional correctness
of data structures. Interpolation has also been suggested recently to synthesize invariants
involving a combination of data and shape properties [138]. It is, however, not clear how
the technique can be applied to a more complicated heap structure, such as an AVL tree,
where shape and data properties are not cleanly separated but are intricately connected.
Recent work also includes synthesizing heap invariants in the logic from [113] by extending
IC3 [139, 140].
In this work, our learning algorithm synthesizes invariants over a fixed set of predicates.

When all programs belong to a specific class, such as the class of programs manipulating
data structures, these predicates can be uniformly chosen using templates. Investigating
automated ways for discovering candidate predicates is a very interesting future direction.
Related work in this direction includes recent works [132, 133].

67



3.6 CONCLUSIONS AND FUTURE WORK

We have presented a learning-based framework for invariant synthesis in the presence
of sound but incomplete verification engines. To prove that our technique is effective in
practice, we have successfully applied it two important and challenging verification setting:
verifying heap-manipulating programs against specifications expressed in an expressive and
undecidable dialect of separation logic and verifying programs against specifications with
universal quantification. In particular for the former setting, we are not aware of any other
technique that can handle our extremely challenging benchmark suite.

Several future research directions are interesting. First, the framework we have developed
is based on the principle of counterexample-guided inductive synthesis, where the invariant
synthesizer synthesizes invariants using non-provability information but does not directly
work on the program’s structure. It would be interesting to extend white-box invariant
generation techniques such as interpolation/IC3/PDR, working using D (or B) abstractions
of the program directly in order to synthesize invariants for them. Second, in the CD-NPI
learning framework we have put forth, it would be interesting to change the underlying logic
of communication B to a richer logic, say the theory of arithmetic and uninterpreted functions.
The challenge here would be to extract non-provability information from the models to the
richer theory, and pairing them with synthesis engines that synthesize expressions against
constraints in B. Finally, we think invariant learning should also include experience gained in
verifying other programs in the past, both manually and automatically. A learning algorithm
that combines logic-based synthesis with experience and priors gained from repositories of
verified programs can be more effective.

68



CHAPTER 4: SORCAR: PROPERTY-DRIVEN ALGORITHMS FOR
LEARNING CONJUNCTIVE INVARIANTS

In this chapter, we present a novel ICE learning algorithm to learn conjunctive inductive
invariants over a fixed finite set of predicates P . Houdini [70] is an existing learner to learn
conjunctive inductive invariants, and synthesizes the tightest inductive invariant. Conse-
quently, it can ignore the property to be proven about the program. However, the tightest
invariant can be quite complex (have many conjuncts) and hard to synthesize.
We present Sorcar, a property driven learning algorithm for conjunctive inductive

invariants and performs better than existing Houdini based tools on certain classes of
benchmarks. Intuitively, Sorcar grows slowly a set of relevant predicates R ⊆ P in each
round and proposes the tightest conjunctive invariant over R. It guarantees convergence
to a conjunctive invariant (if one exists over P) in 2|P| rounds of communication with any
verification oracle.

In particular, in this chapter:

• The Sorcar learning algorithm is a general conjunctive ICE learning algorithm that
can be used in many program verification algorithms.

• We use it in two settings: one for GPUVerify programs and the others where validation
of verification conditions is incomplete (heap verification).

• The notion of counterexamples are either concrete states or non-provability information,
respectively.

4.1 INTRODUCTION

We present a new class of learning algorithms, Sorcar, to synthesize conjunctive inductive
invariants, for proving that a program satisfies its assertions, and hence is property-driven.

While one can potentially learn/synthesize invariants in complex logics, one technique that
has been particularly effective and scalable is to fix a finite set of predicates P over the program
configurations and only learn inductive invariants that can be expressed as a conjunction
of predicates over P. For particular domains of programs and types of specifications, it is
possible to identify classes of candidate predicates that are typically involved in invariants
(e.g., based on the code of the programs and/or the specification), and learning invariants
over such a class of predicates has proven very effective. A prominent example is device

69



Learning Property Complexity Maximum Final conjunct
algorithm driven? per round # rounds
Houdini No Polynomial |P| Largest set

Sorcar Yes Polynomial 2 · |P|
Bias towards weaker in-
variants (smaller sets of
conjunctions) involving
only relevant predicates

Table 4.1: Comparison of Houdini [70] and Sorcar

drivers, and Microsoft’s Static Driver Verifier [141, 142] (specifically the underlying tool
Corral [143]) is an industry-strength tool that leverages exactly this approach.

The classical algorithm for learning conjunctive invariants over a finite class of predicates
is the Houdini algorithm [70], which mimics the elimination algorithm for learning conjuncts
in classical machine learning [78]. Houdini starts with a conjectured invariant that contains
all predicates in P and, in each round, uses information from a failed verification attempt
to remove predicates. The most salient aspect of the algorithm is that it is guaranteed to
converge to a conjunctive invariant, if one exists, in n = |P| rounds (which is logarithmic in
the number of invariants, as there are 2n of them). However, the Houdini algorithm has
disadvantages as well. Most notably, it is not property-driven as it does not consider the
assertions that occur in the program (which is a consequence of the fact that it was originally
designed to infer invariants of unannotated programs). Secondly, Houdini synthesizes
invariants that have the largest number of conjuncts (i.e., the semantically smallest sets
of program configurations expressible as a conjunctive formula). In fact, one can view the
Houdini algorithm as a way of computing the least fixed point in the abstract interpretation
framework, where the abstract domain consists of conjunctions over the candidate predicates.

The primary motivation to build a property-driven learning algorithm is to explore invariant
generation techniques that can be potentially more efficient in proving programs correct.
The Sorcar algorithm has the following design features (also see Table 4.1). First, it is
property-driven, in other words, the algorithm tries to find conjunctive inductive invariants
that are sufficient to prove the assertions in the program. By contrast, Houdini computes the
tightest inductive invariant. Since Sorcar is property-driven, it can find weaker inductive
invariants (i.e., invariants with fewer conjuncts). Our intuition is that by synthesizing
weaker, property-driven invariants, we can verify programs more efficiently. Second, Sorcar
guarantees that the number of rounds of interaction with the teacher is still linear (2n
rounds compared to Houdini’s promise of n rounds). Third, Sorcar promises to do only

70



polynomial amount of work in each round (i.e., polynomial in n and in the number of current
counterexamples), similar to Houdini.
The Sorcar algorithm works, intuitively, by finding conjunctive invariants over a set of

relevant predicates R ⊆ P . This set is grown slowly (but monotonically, as monotonic growth
is crucial to ensure that the number of rounds of learning is linear) by adding predicates only
when they were found to be relevant to prove assertions. More specifically, predicates are
considered relevant based on information gained from counterexamples of failed verification
conditions that involve assertions in the program. The precise mechanism of growing the set
of relevant predicates can vary, and we define four variants of Sorcar (e.g., choosing all
predicates that show promise of relevance or greedily choosing a minimal number of relevant
predicates). The Sorcar suite of algorithms is hence a new class of property-driven learning
algorithms for conjunctive invariants with different design principles.
The Sorcar algorithm is certainly well suited for applications where property-driven

invariants are expected to be small and one wishes to learn small invariants. Learning small
invariants can be particularly useful in applications where these algorithms are used to
mine specifications that a user may read. For example, if we use Sorcar to mine provable
contracts for methods, then contracts would be easier to read if they are smaller (i.e., contain
fewer predicates). However, even when invariants are not required to be small, Sorcar,
being property-driven, can be more effective.
We evaluated the efficiency of Sorcar on two domains of benchmarks, where learning

conjunctive invariants is very effective. The first is the class of programs handled by
GPUVerify [72, 73], which considers GPU programs, reduces the problem to a sequential
verification problem (by simulating two threads at each parallel fork), and proceeds to find
conjunctive invariants over a fixed set P of predicates to prove the resulting sequential program
correct. The second class of programs dynamically update heaps against specifications in
separation logic and requires synthesizing invariants to prove their correctness. The verification
oracle in the former is an SMT solver that returns concrete Horn-ICE counterexamples. In
the latter, predicates involve inductively defined relations (such as a list-segment, the heaplet
associated with it, or the set of keys stored in it), and validating verification conditions is
undecidable in general. Hence, the verification oracle is sound but incomplete (based on
“natural proofs”) and returns non-provability information as counterexamples that can be
transformed into ICE counterexamples. In both domains, the set P consists of hundreds of
candidate predicates, which makes invariant synthesis challenging (as there are 2|P| possible
conjunctive invariants).

We have implemented Sorcar on top of the Boogie program verifier [71] and have applied
it to verify both GPU programs for data races [72, 73] and heap manipulating programs

71



against separation logic specifications [74]. To assess the performance of Sorcar, we have
compared it to the current state-of-the-art tools for these programs, which use the Houdini
algorithm. Though Sorcar did not work more efficiently on every program, our empirical
evaluation shows that it is overall more competitive than Houdini. In summary, we found
that (a) Sorcar produces much smaller invariants, (b) Sorcar worked more efficiently
overall in verifying these programs, and (c) Sorcar verified a larger number of programs
than Houdini did (for a suitably large timeout).

4.2 BACKGROUND

In this section, we provide the background on learning-based invariant synthesis. In
particular, we briefly recapitulate the Horn-ICE learning framework (in Section 4.2.1) and
discuss the Houdini algorithm (in Section 4.2.2), specifically in the context of the Horn-ICE
framework. Note that in this chapter, we use the term ICE and Horn-ICE interchangeably
as the Horn-ICE framework can be seen as an extension of the ICE framework [126].
To make the Horn-ICE framework mathematically precise, let P be the program (with

assertions) under consideration and C the set of all program configurations of P . Furthermore,
let us fix a finite set P of predicates p : C → B over the program configurations, where
B = {true, false} is the set of Boolean values. These predicates capture interesting properties
of the program and serve as the basic building blocks for constructing invariants. We
assume that the values of these predicates can either be obtained directly from the program
configurations or that the program is instrumented with ghost variables that track the
values of the predicates at important places in the program (e.g., at the loop header and
immediately after the loop). As notational convention, we write c |= p if p(c) = true and
c 6|= p if p(c) = false. Moreover, we lift this notation to formulas ϕ over P (i.e., arbitrary
Boolean combinations of predicates from P) and use c |= ϕ (c 6|= ϕ) to denote that c satisfies
ϕ (c does not satisfy ϕ).

To simplify the presentation in the remainder of this chapter, we use conjunctions p1∧· · ·∧pn
of predicates over P and the corresponding sets {p1, . . . , pn} ⊆ P interchangeably. In
particular, for a (sub-)set X = {p1, . . . , pn} ⊆ P of predicates and a program configuration
c ∈ C, we write c |= X if and only if c |= p1 ∧ · · · ∧ pn.

4.2.1 The Horn-ICE Learning Framework

The Horn-ICE learning framework [125, 126] is a general framework for learning inductive
invariants in a black-box setting. We here assume without loss of generality that the task is

72



Learner
(learning algorithm)

Teacher
(program verifier)

candidate invariant ϕ

positive, negative, or Horn counterexample

Figure 4.1: The Horn-ICE learning framework [125, 126]

to synthesize a single invariant. In the case of learning multiple invariants, say at different
program locations, one can easily expand the given predicates to predicates of the form
(pc = l)→ p where pc refers to the program counter, l is the location of an invariant in the
program, and p ∈ P. Learning a conjunctive invariant over this extended set of predicates
then corresponds to learning multiple conjunctive invariants at the various locations.
As sketched in Figure 4.1, the Horn-ICE framework consists of two distinct entities—the

learner and the teacher—and proceeds in rounds. In each round, the teacher receives a candi-
date invariant ϕ from the learner and checks whether ϕ proves the program correct. Should
ϕ not be adequate to prove the program correct, the learner replies with a counterexample,
which serves as a means to correct inadequate invariants and guide the learner towards a
correct one. More precisely, a counterexample takes one of three forms:1

• If the pre-condition α of the program does not imply ϕ, then the teacher returns a
positive counterexample c ∈ C such that c |= α but c 6|= ϕ.

• If ϕ does not imply the post-condition β of the program, then the teacher returns a
negative counterexample c ∈ C such that c |= ϕ but c 6|= β.

• If ϕ is not inductive, then the teacher returns a Horn counterexample ({c1, . . . , cn}, c) ∈
2C × C such that ci |= ϕ for each i ∈ {1, . . . , n} but c 6|= ϕ. (We encourage the reader
to think of Horn counterexamples as constraints of the form (c1 ∧ · · · ∧ cn)→ c.)

A teacher who returns counterexamples as described above always enables the learner
to make progress in the sense that every counterexample it returns is inconsistent with
the current conjecture (i.e., it violates the current conjecture). Moreover, the Horn-ICE
framework requires the teacher to be honest, meaning that each counterexample needs to be

1By abuse of notation, we write c |= α (c 6|= α) to denote that c satisfies (violates) the formula α even if α
contains predicates that do not belong to P.

73



consistent with all inductive invariants that prove the program correct (i.e., the teacher does
not rule out possible solutions). Finally, note that such a teacher can indeed be built since
program verification can be stated by means of constrained Horn clauses [144]. When the
candidate invariant does not make such clauses true, some Horn clause failed, and the teacher
can find a Horn counterexample using a logic solver (positive counterexamples arise when the
left-hand-side of the Horn counterexample is empty, while negative counterexamples arise
when the left-hand-side has one element and the-right-hand side is false).

The objective of the learner, on the other hand, is to construct a formula ϕ over P from
the counterexamples received thus far. For the sake of simplicity, we assume that the learner
collects all counterexamples in a data structure S = (S+, S−, SH), called Horn-ICE sample,
where

1. S+ ⊆ C is a finite set of positive counterexamples;

2. S− ⊆ C is a finite set of negative counterexamples; and

3. SH ⊆ 2C × C is a finite set of Horn counterexamples.

To measure the complexity of a sample, we define its size, denoted by |S|, to be |S+|+ |S−|+∑
(L,c)∈SH

(|L|+ 1).
Given a Horn-ICE sample S = (S+, S−, SH), the learner’s task is then to construct a

formula ϕ over P that is consistent with S in that

1. c |= ϕ for each c ∈ S+;

2. c 6|= ϕ for each c ∈ S−; and

3. for each ({c1, . . . , cn}, c) ∈ SH , if ci |= ϕ for all i ∈ {1, . . . , n}, then c |= ϕ.

This task is called passive Horn-ICE learning, while the overall learning setup can be thought
of as iterative (or online) Horn-ICE learning. In the special case that the learner produces
conjunctive formulas, we say that a set X ⊆ P is consistent with S if and only if the
corresponding conjunction ∧p∈X p is consistent with S.

In general, the Horn-ICE learning framework permits arbitrary formulas over the predicates
as candidate invariants. In this chapter, however, we exclusively focus on conjunctive formulas
(i.e., conjunctions of predicates from P). In fact, conjunctive invariants form an important
subclass in practice as they are sufficient to prove many programs correct [70, 74] (also see
our experimental evaluation in Section 4.4). Moreover, one can design efficient learning
algorithms for conjunctive Boolean formulas, as we show next.

74



4.2.2 Houdini as a Horn-ICE Learning Algorithm

Houdini [70] is a popular algorithm to synthesize conjunctive invariants in interaction
with a theorem prover. For our purposes, however, it is helpful to think of Houdini as an
adaptation of the classical elimination algorithm [78] to the Horn-ICE learning framework that
is modified to account for Horn counterexamples. To avoid confusion, we refer to algorithmic
component that the Houdini learning algorithm as the “elimination algorithm” and the
implementation of the elimination algorithm as a learner in the context of the Horn-ICE
framework as Houdini-ICE.

Let us now describe the elimination algorithm as it is used in the design of Sorcar as well.
Given a Horn-ICE sample S = (S+, S−, SH), the elimination algorithm computes the largest
conjunctive formula X ⊆ P in terms of the number of predicates in X (i.e., the semantically
smallest set of program configurations expressible by a conjunctive formula) that is consistent
with S. Starting with the set X = P of all predicates, the elimination algorithm proceeds as
follows:

1. The elimination algorithm removes all predicates p ∈ X from X that violate a positive
counterexample (i.e., there exists a positive counterexample c ∈ S+ such that c 6|= p).
The result is the unique largest set X of predicates—alternatively the largest conjunctive
formula—that is consistent with S+ (i.e., c |= X for all c ∈ S+).

2. The elimination algorithm checks whether all Horn counterexamples are satisfied. If
a Horn counterexample ({c1, . . . , cn}, c) ∈ SH is not satisfied, it means that each
program configuration ci of the left-hand-side satisfies X, but the configuration c on
the right-hand-side does not. However, X corresponds to the semantically smallest
set of program configurations expressible by a conjunctive formula that is consistent
with S+. Moreover, all program configurations ci on the left-hand-side of the Horn
counterexample also satisfy X. Thus, the right-hand-side c necessarily has to satisfy X
as well (otherwise X would not satisfy the Horn counterexample). To account for this,
the elimination algorithm adds c as a new positive counterexample to S+.

3. The elimination algorithm repeats Steps 1 and 2 until a fixed point is reached. Once
this happens, X is the unique largest set of predicates that is consistent with S+ and
SH .

Finally, the elimination algorithm checks whether each negative counterexample violates
X (i.e., c 6|= X for each c ∈ S−). If this is the case, X is the largest set of predicates that
is consistent with S; otherwise, no consistent conjunctive formula exists. Note that the
elimination algorithm does not learn from negative counterexamples.

75



It is not hard to verify that the time the elimination algorithm spends in each round
is polynomial in the number of predicates and the size of the Horn-ICE sample (provided
predicates can be evaluated in constant time). If the elimination algorithm is employed in
the iterative Horn-ICE setting (as Houdini-ICE), it is guaranteed to converge in at most
|P| rounds, or it reports that no conjunctive invariant over P exists.

The property that Houdini-ICE converges in at most |P| rounds is of great importance in
practice. One can, for instance, in every round learn the smallest set of conjuncts satisfying
the sample, say using a SAT solver. Doing so would not significantly increase the time taken
for learning in each round (thanks to highly-optimized SAT solvers), but the worst-case
number of iterations to converge to an invariant becomes exponential. An exponential number
of rounds, however, makes learning invariants often intractable in practice (we implemented
such a SAT-based learner, but it performed poorly on our set of benchmarks). Hence, it
is important to keep the number of iterations small when learning invariants. Note that
Houdini-ICE does not use negative examples to learn formulas and, hence, is not property-
driven (negative examples come from configurations that lead to violating assertions). The
Sorcar algorithm, which we describe in the next section, has this feature and aims for
potentially weaker invariants that are sufficient to prove the assertions in the program. Note,
however, that Houdini-ICE is complete in the sense that it is guaranteed to find an inductive
invariant that proves the program correct against its assertions, if one exists that can be
expressed as a conjunction over the given predicates.

4.3 THE SORCAR HORN-ICE LEARNING ALGORITHM

One disadvantage of Houdini-ICE is that it learns in each round the largest set of conjuncts,
independent of negative counterexamples, and, hence, independent of the assertions and
specifications in the program—in fact, it learns the semantically smallest inductive invariant
expressible as a set of conjuncts over P . As a consequence, Houdini-ICE may spend a lot
of time finding the tightest invariant (involving many predicates) although a simpler and
weaker invariant suffices to prove the program correct. This motivates the development of
our novel Sorcar Horn-ICE learning algorithm for conjuncts, which is property-driven (i.e.,
it also considers the assertions in the program) and has a bias towards learning conjunctions
with a smaller number of predicates.

The salient feature of Sorcar is that it always learns invariants involving what we
call relevant predicates, which are predicates that have shown some evidence to affect the
assertions in the program. More precisely, we say that a predicate is relevant if it evaluates
to false on some negative counterexample or on a program configuration appearing on the

76



left-hand-side of a Horn counterexample. This indicates that not assuming this predicate
leads to an assertion violation or the invariant not being inductive, and is hence deemed
important as a candidate predicate in the synthesized invariant. However, naively choosing
relevant predicates does, in general, lead to an exponential number of rounds. Thus, Sorcar
is designed to select relevant predicates carefully and requires at most 2|P| rounds to converge
to an invariant (which is twice the number that Houdini-ICE guarantees). Moreover, the
set of predicates learned by Sorcar is always a subset of those learned by Houdini-ICE.
Algorithm 4.1 presents the Sorcar Horn-ICE learner in pseudo code. In contrast to

Houdini-ICE, it is not a purely passive learning algorithm but is divided into a passive
part (Sorcar-Passive) and an iterative part (Sorcar-Iterative), the latter being invoked
in every round of the Horn-ICE framework. More precisely, Sorcar-Iterative maintains
a state in form of a set R ⊆ P in the course of the iterative learning, which is empty in
the beginning and used to accumulate relevant predicates (Line 19). The exact choice of
relevant predicates, however, is delegated to an external function Relevant-Predicates.
We treat this function as a parameter for the Sorcar algorithm and discuss four possible
implementations at the end of this section. Let us now present Sorcar in detail.

4.3.1 The Passive Sorcar Algorithm

Given a Horn-ICE sample S and a set R ⊆ P, Sorcar-Passive first constructs the
largest conjunction X ⊆ P that is consistent with S (Line 5). This construction follows the
elimination algorithm described in Section 4.2.2 and ensures that X is consistent with all
counterexamples in S. Since X is the largest set of predicates consistent with S, it represents
the smallest consistent set of program configurations expressible as a conjunction over P . As a
consequence, it follows that X ∩R—in fact, any subset of X—is consistent with S+. However,
X ∩R might not be consistent with S− or SH . To fix this problem, Sorcar-Passive collects
all inconsistent negative counterexamples in a set N and all inconsistent Horn counterexamples
in a set H (Lines 7 to 14). Based on these two sets, Sorcar-Passive then computes a set of
relevant predicates, which it adds to R (Line 15). As mentioned above, the exact computation
of relevant predicates is delegated to a function Relevant-Predicates, which we treat as a
parameter. The result of this function is a set R′ ⊆ P of predicates that needs to contain at
least one new predicate that is not yet present in R. Once such a set has been computed and
added to R, the process repeats (R grows monotonically larger) until a consistent conjunctive
formula is found. Then, Sorcar-Passive returns both the conjunction X ∩R as well as the
new set R of relevant predicates. Note that the resulting conjunction is always a subset of
the relevant predicates.

77



Algorithm 4.1: The Sorcar Horn-ICE learning algorithm
1 Function Relevant-Predicates(N , H, X, R):
2 return a set of R′ ⊆ P of relevant predicates such that R′ \R 6= ∅;
3 end

4 Procedure Sorcar-Passive(S = (S+, S−, SH), R):
5 Run the elimination algorithm to compute the set X = {p1, . . . , pn}, corresponding to

the largest conjunctive formula
∧n
i=1 pi over P that is consistent with S (abort if no

such formula exists);
6 while X ∩R is not consistent with S do
7 N ← ∅; // Stores inconsistent negative counterexamples
8 H ← ∅; // Stores inconsistent Horn counterexamples

9 foreach negative counterexample c ∈ S− not consistent with X ∩R do
10 N ← N ∪ {c};
11 end
12 foreach Horn counterexample (L, c) ∈ SH not consistent with X ∩R do
13 H ← H ∪ {(L, c)};
14 end
15 R← R ∪ Relevant-Predicates(N , H, X, R);
16 end
17 return (X ∩R,R);
18 end

19 static R← ∅; // Stores relevant predicates across rounds

20 Procedure Sorcar-Iterative(S):
21 (Y,R)← Sorcar-Passive(S, R);
22 return Y ;
23 end

The condition of the loop in Line 6 immediately shows that the set X ∩ R is consistent
with the Horn-ICE sample S once Sorcar-Passive terminates. The termination argument,
however, is less obvious. To argue termination, we first observe that X is consistent with
each positive counterexample in S+ and, hence, X ∩R remains consistent with all positive
counterexamples during the run of Sorcar-Passive. Next, we observe that the termination
argument is independent of the exact choice of predicates added to R—in fact, the predicates
need not even be relevant in order to prove termination of Sorcar-Passive. More precisely,
since the function Relevant-Predicates is required to return a set R′ ⊆ P that contains
at least one new (relevant) predicate not currently present in R, we know that R grows
strictly monotonically. In the worst case, the loop in Lines 6 to 16 repeats |P| times until
R = P; then, X ∩ R = X, which is guaranteed to be consistent with S by construction
of X (see Line 5). Depending on the implementation of Relevant-Predicates, however,

78



Sorcar-Passive can terminate earlier with a much smaller consistent set X ∩R $ X. Since
the time spent in each iteration of the loop in Lines 6 to 16 is proportional to |P| · |S|+f(|S|),
where f is a function capturing the complexity of Relevant-Predicates, the overall runtime
of Sorcar-Passive is in O

(
|P|2 · |S| + |P| · f(|S|)

)
. This is summarized in the following

theorem.

Theorem 4.1 (Passive Sorcar algorithm). Given a Horn-ICE sample S and a set R ⊆ P
of relevant predicates, the passive Sorcar algorithm learns a consistent set of predicates (i.e.,
a consistent conjunction over P) in time O

(
|P|2 · |S|+ |P| · f(|S|)

)
where f is a function

capturing the complexity of the function Relevant-Predicates.

Before we continue, let us briefly mention that the set of predicates returned by Sorcar
is always a subset of those returned by Houdini-ICE.

4.3.2 The Iterative Sorcar Algorithm

Sorcar-Iterative maintains a state in form of a set R ⊆ P of relevant predicates in
the course of the learning process (Line 19). In each round of the Horn-ICE learning
framework, the learner invokes Sorcar-Iterative with the current Horn-ICE sample S as
input, which contains all counterexamples that the learner has received thus far. Internally,
Sorcar-Iterative calls Sorcar-Passive, updates the set R, and returns a new conjunctive
formula, which the learner then proposes as new candidate invariant to the teacher. If
Sorcar-Passive aborts (because no conjunctive formula over P that is consistent with S
exists), so does Sorcar-Iterative.

To ease the presentation in the remainder of this section, let us assume that the program
under consideration can be proven correct using an inductive invariant expressible as a
conjunction over P . Under this assumption, the iterative Sorcar algorithm identifies such
an inductive invariant in at most 2|P| rounds, as stated in the following theorem.

Theorem 4.2 (Iterative Sorcar algorithm). Let P be a program and P a finite set of
predicates over the configurations of P . When paired with an honest teacher that enables
progress, the iterative Sorcar algorithm learns an inductive invariant (in the form of a
conjunctive formula over P) that proves the program correct in at most 2|P| rounds, provided
that such an invariant exists.

Proof. We first observe that the computation of the set X in Line 5 of Sorcar-Passive
always succeeds. This is a direct consequence of the honesty of the teacher (see Section 4.2.1)
and the assumption that at least one inductive invariant exists that is expressible as a

79



conjunction over P. This observation is essential as it shows that Sorcar-Iterative does
not abort.
Next, recall that the teacher enables progress in the sense that every counterexample is

inconsistent with the current conjecture (see Section 4.2.1). We use this property to argue
that the number of iterations of Sorcar-Iterative has an upper bound of at most 2|P|,
which can be verified by carefully examining the updates of X and R as counterexamples are
added to the Horn-ICE sample S:

• If a positive counterexample c is added to S, then it is added because c 6|= X ∩R (as
the teacher enforces progress). This implies c 6|= X, which in turn means that there
exists a predicate p ∈ X with c 6|= p. In the subsequent round of the passive Sorcar
algorithm, p is no longer present in X (see Line 5) and |X| decreases by at least one as
a result.

• If a negative counterexample c is added to S, then it is added because c |= X ∩R (as
the teacher enforces progress). This means that the set X remains unchanged in the
next iteration but at least one relevant predicate is added to R in order to account for
the new negative counterexample (Line 15). This increases |R| by at least one.

• If a Horn counterexample ({c1, . . . , cn}, c) is added to S, then it is added because
ci |= X ∩ R for each i ∈ {1, . . . , n} but c 6|= X ∩ R (as the teacher enforces progress).
In this situation, two distinct cases can arise:

1. If ({c1, . . . , cn}, c) is not consistent with X (i.e., ci |= X for each i ∈ {1, . . . , n}
but c 6|= X), the computation in Line 5 identifies and removes a predicate p ∈ X
with c 6|= X in order to make X consistent with S. This means that |X| decreases
by at least one.

2. If ({c1, . . . , cn}, c) is consistent with X but not with X ∩ R, then X remains
unchanged. However, at least one new relevant predicate is added to R in order
to account for the new Horn counterexample (Line 15). This means that |R|
increases by at least one.

Thus, either |X| decreases or |R| increases by at least one.

In the worst case, Sorcar-Iterative arrives at a state with X = ∅ and R = P (if it does
not find an inductive invariant earlier). Since the algorithm starts with X = P and R = ∅,
this worst-case situation occurs after at most 2|P| iterations.

Let us now assume that Sorcar-Iterative indeed arrives at a state withX = ∅ and R = P .
Then, we claim that the result of Sorcar-Iterative, namely X ∩ R = ∅, is an inductive

80



invariant. To prove this claim, first recall that Theorem 4.1 shows that Sorcar-Passive
always learns a set of predicates that is consistent with the given Horn-ICE sample S. In
particular, Line 5 of Sorcar-Passive computes the (unique) largest set X ⊆ P that is
consistent with S. Second, we know that every inductive invariant X? is consistent with S
because the teacher is honest. Thus, we obtain X? ⊆ X = ∅ and, hence, X? = X because
both X and X? are consistent with S and X is the largest consistent set. This means that
X is an inductive invariant because X? is one.

Note, however, that Sorcar-Iterative might terminate earlier, in which case the current
conjecture is an inductive invariant by definition of the Horn-ICE framework. In summary, we
have shown that Sorcar-Iterative terminates in at most 2|P| iterations with an inductive
invariant (if one is expressible as an conjunctive formula over P). Q.E.D.

Finally, let us note that Sorcar-Iterative can also detect if no inductive invariant exists
that is expressible as a conjunction over P . In this case, the computation of X in Line 5 of
Sorcar-Passive fails and the algorithm aborts.

4.3.3 Computing Relevant Predicates

We develop four different implementations of the function Relevant-Predicates. All of
these functions share the property that the search for relevant predicates is limited to the set
X \R because only predicates in this set can help making X ∩R consistent with negative
and Horn counterexamples (cf. Line 6 of Algorithm 4.1). Moreover, recall that we define
a predicate to be relevant if it evaluates to false on some negative counterexample or on a
program configuration appearing on the left-hand-side of a Horn counterexample. Intuitively,
these are predicates in P that have shown some relevancy in the sense that they can be used
to establish consistency with the Horn-ICE sample.

Relevant-Predicates-Max:
The function Relevant-Predicates-Max, shown as Algorithm 4.2, computes the maximal
set of relevant predicates from X \R with respect to the negative counterexamples in N and
the Horn counterexamples in H. To this end, it accumulates all predicates that evaluate to
false on a negative counterexample in N or on a program configuration appearing on the
left-hand-side of a Horn counterexample in H. The resulting set R′ can be large, but X ∩R′

is guaranteed to be consistent with N and H (because each negative counterexample and
each program configuration on the left-hand-side of a Horn counterexample violates at least
one predicates in R′, the latter causing each Horn counterexample to be violated). Since

81



Algorithm 4.2: Computing the maximal set of relevant predicates
1 Function Relevant-Predicates-Max(N , H, X, R):
2 R′ ← ∅;
3 foreach negative counterexample c ∈ N do
4 R′ ← R′ ∪ {p ∈ X \R | c 6|= p};
5 end
6 foreach Horn counterexample ({c1, . . . , cn}, c) ∈ H do
7 R′ ← R′ ∪

⋃n
i=1{p ∈ X \R | ci 6|= p};

8 end
9 return R′;

10 end

X ∩R was neither consistent with N nor with H, and since R′ ⊆ X \R, it follows that R′

must contain at least one relevant predicate not in R, thus satisfying the requirement of
Relevant-Predicates. Finally, the runtime of Relevant-Predicates-Max is in O(|P| · |S|)
since X \R ⊆ P , N ⊆ S−, and H ⊆ SH .

Relevant-Predicates-First:
The function Relevant-Predicates-First is shown as Algorithm 4.3. Its goal is to select
a smaller set of relevant predicates than Relevant-Predicates-Max, while giving the user
some control over which predicates to choose. More precisely, Relevant-Predicates-First
selects for each negative counterexample and each Horn counterexample only one relevant
predicate p ∈ X \ R. The exact choice is determined by a total ordering <P over the
predicates, which reflects a preference among predicates and which we assume to be a priori
given by the user. Using the same arguments as for the function Relevant-Predicates-Max,
it is not hard to verify that the resulting set R′ contains at least one additional relevant
predicate not in R and that X ∩R′ is consistent with N and H. Moreover, R′ clearly contains
only a subset of the predicates returned by Relevant-Predicates-Max. Again, the runtime
is in O(|P| · |S|).

Relevant-Predicates-Min:
The function Relevant-Predicates-Min, shown as Algorithm 4.4, takes the idea of
Relevant-Predicates-First one step further and computes a (not necessarily unique)
minimum set of relevant predicates with respect to N and H. It does so by means of a reduc-
tion to a well-known optimization problem called minimum hitting set [145].2 For a collection
{A1, . . . , A`} of finite sets, a set B is a hitting set if B ∩Ai 6= ∅ for all i ∈ {1, . . . , `}, and the

2Note that the corresponding decision problem is NP-complete.

82



Algorithm 4.3: Computing relevant predicates based on a preference ordering
1 Function Relevant-Predicates-First(N , H, X, R):
2 Define a total order <P over P;
3 R′ ← ∅;
4 foreach negative counterexample c ∈ N do
5 R′ ← R′ ∪ {p} where p is the <P -smallest predicate with p ∈ X \R and c 6|= p;
6 end
7 foreach Horn counterexample ({c1, . . . , cn}, c) ∈ H do
8 R′ ← R′ ∪ {p} where p is the <P -smallest predicate from the set⋃n

i=1{p ∈ X \R | ci 6|= p};
9 end

10 return R′;
11 end

Algorithm 4.4: Computing a minimal set of relevant predicates
1 Function Relevant-Predicates-Min(N , H, X, R):
2 For each c ∈ N , construct Ac := {p ∈ X \R | c 6|= p};
3 For each (L, c) ∈ H, construct A(L,c) := {p ∈ X \R | ∃c′ ∈ L : c′ 6|= p};

4 Compute a minimal hitting set R′ for the instance
Q := {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H} (e.g., using a SAT solver);

5 return R′;
6 end

minimum hitting set problem asks to compute a hitting set of minimum cardinality. In the
first step of the reduction, the function Relevant-Predicates-Min constructs for each nega-
tive counterexample c ∈ N the set Ac of all predicates p ∈ X \R violating c and for each Horn
counterexample (L, c) ∈ H the set A(L,c) of all predicates p ∈ X \R violating some program
configuration c′ ∈ L. In a second step, it uses an exact algorithm (e.g., a SAT solver) to find
a minimum hitting set R′ for the problem instance Q := {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H}.
By construction of the sets Ac and A(L,c), the resulting minimum hitting set R′ then is a
minimum set of relevant predicates guaranteeing that X ∩ R′ is consistent with N and H.
Moreover, R′ contains at least one relevant predicate not in R. However, the downside of
approach is that it is not a polynomial time algorithm as the underlying decision problem is
NP-complete.

Relevant-Predicates-Greedy:
The key idea underlying the function Relevant- Predicates-Greedy, which is shown as
Algorithm 4.5, is to replace the exact computation of a minimum hitting set with a polynomial-
time approximation algorithm. More precisely, Relevant-Predicates-Greedy implements

83



Algorithm 4.5: Greedily computing a “small” set of relevant predicates
1 Function Relevant-Predicates-Greedy(N , H, X, R):
2 For each c ∈ N , construct Ac := {p ∈ X \R | c 6|= p};
3 For each (L, c) ∈ H, construct A(L,c) := {p ∈ X \R | ∃c′ ∈ L : c′ 6|= p};

4 R′ ← ∅;
5 Q← {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H};

6 while Q 6= ∅ do
7 Pick p ∈ X \ (R ∪R′) such that |{A ∈ Q | p ∈ A}| is maximal;
8 R′ ← R′ ∪ {p};
9 Q← Q \ {A ∈ Q | p ∈ A};

10 end
11 return R′;
12 end

a straightforward greedy heuristic that successively chooses predicates p ∈ X \R that have
the largest number of a non-empty intersections with sets in Q. This heuristic is essentially
the dual of the well-known greedy algorithm for the minimum set cover problem [84] and
guarantees to find a solution that is at most logarithmically larger than the optimal one.
Apart from being an approximation of the minimal set, choosing relevant predicates greedily
based on the number of sets it hits also has a statistical bias (choosing predicates more
commonly occurring in the sets). Otherwise, except for a runtime in O(|P| · |S|2) and an
approximation factor of log |S|, Relevant-Predicates-Greedy shares the same properties
as the function Relevant-Predicates-Min.

4.4 EXPERIMENTAL EVALUATION

To evaluate the performance of Sorcar, we implement a prototype, featuring all four
variants of Sorcar (as well as more heuristics, which we do not discuss here). This
prototype is built on top of the program verifier Boogie [71], which natively supports
Houdini and provides a so-called “Abstract-Houdini framework” [146] on top of which we
have implemented ICE/Horn-ICE algorithms, including Sorcar. Consequently, Sorcar
can easily be integrated into existing, Boogie-based verification tool chains.
We compared Sorcar with two Houdini-based tools: GPUVerify [72, 73], a tool for

checking data race freedom in GPU kernels, and a tool by Neider et al. [74] for verifying
programs that dynamically manipulate heaps against specifications in separation logic. Since
separation logic is undecidable in general, the latter tool is designed to work in tandem with
a sound-but-incomplete verification engine rather than a complete decision procedure. To

84



the best of our knowledge, both tools are the best ones available for their respective domains.
We have evaluated our implementation on two benchmarks suites: the first suite is shipped

with GPUVerify, while the second is included in Neider at al.’s tool. As both of these tools
use Houdini, all benchmarks were already equipped with a large number of predicates (often
several hundred). We describe each benchmark suite in more detail shortly.
The goal of our experimental evaluation was twofold: (a) to determine whether Sorcar

can prove programs correct that the Houdini-based tools cannot (and vice versa) as well as
(b) to assess the performance of Sorcar in comparison to these two tools. Since one of the
key design principles of Sorcar is to improve verification by constructing weaker invariant
(smaller sets of conjuncts), we also report on the size of the invariants (number of conjuncts)
inferred by Sorcar and compare to the other tools.

4.4.1 Benchmarks and Compared Tools

The first benchmark suite originates from GPUVerify [72, 73] and was obtained from GPU
kernels written in OpenCL and CUDA. GPUVerify processes such programs automatically
by means of a complex process, involving sequentialization and compilation to the Boogie
programming language. After removing all programs that did not have loops or recursion,
this benchmark suite contained 287 programs.
GPUVerify proceeds in three stages. The first stage compiles an OpenCL or CUDA

program into a Boogie program. The second stage uses Houdini in a custom version of
Boogie to infer an inductive invariant; in this phase, the assertions are in fact removed
as Houdini is anyway agnostic to the property being verified. Finally, the third phase
substitutes the synthesized invariants, inserts the assertions back into the Boogie program,
and verifies it.
The second benchmark suite is taken from Neider et al. [74]. It consists of 62 heap

manipulating programs, written in C and are equipped with specifications in Dryad, a
dialect of separation logic that allows expressing second order properties using recursive
functions and predicates.
Neider et al.’s tool uses the following verification tool chain. First, an extension of

VCC [100], called VCDryad [68], compiles the C code into a Boogie program by unfolding
recursive definitions, modeling heaplets as sets, and applying frame reasoning using a technique
called natural proofs [68, 69, 105]. The tool then poses the verification problem as an invariant
synthesis problem over a class of predicates that express complex properties of the heap (such
as whether the heaplets of two data structures are disjoint, whether a list is sorted, and so
on). Finally, Neider et al.’s tool uses Houdini to infer a loop invariant.

85



Note that the final phase of both tools is to synthesize a conjunctive invariant over a
fixed set of predicates using Houdini. In our experiments, we have replaced Houdini with
Sorcar.

4.4.2 Evaluation

All experiments were conducted on an Intel Xeon E7-8857 v2 CPU at 3, 6GHz, run-
ning Debian GNU/Linux 9.5. The timeout limit was 1200 s. So as to not clutter the
following presentation too much, we only report on the version of Sorcar that performed
best: Sorcar-Max (using Relevant-Predicates-Max). Additionally, we briefly compare
Sorcar-Max to Sorcar-Greedy, the latter using Relevant-Predicates-Greedy.
Figures 4.2a and 4.2b compare Sorcar-Max and GPUVerify on the first benchmark

suite consisting of GPU kernels. Figure 4.2a compares the time taken to verify a program,
while Figure 4.2b compares the number of predicates in the final invariant (there is only
one loop invariant in these programs). As can be seen from the figures, Sorcar-Max
compares highly favorably in efficiency. Specifically, Sorcar-Max was able to verify 15
programs that GPUVerify could not verify, whereas GPUVerify verified only 2 programs that
Sorcar-Max could not verify. Sorcar-Max was also able to show 9 programs to not
have a conjunctive invariant that GPUVerify could not (GPUVerify was not able to show
this for any program that Sorcar-Max could not). On programs that both tools were
able to verify (216 programs in total), Sorcar-Max took on average 34 s per program (and
synthesized invariants with an average number of 12 predicates). GPUVerify, on the other
hand, took on average 89 s per program (and synthesized invariants with an average number
of 23 predicates).

Additionally (not depicted in the scatter plots), we increased the time limit for programs
that only one tool could verify from 1200 s to 3600 s. GPUVerify was able to verify 8
additional programs within this time limit. Sorcar, on the other hand, verified both
programs that it had timed out on previously. Thus, with this larger timeout, Sorcar was
able to verify a proper superset of programs that GPUVerify verified.

Figures 4.2c and 4.2d compare Sorcar-Max to the tool of Neider et al. [74] on the second
benchmark suite of programs with Dryad specifications. Again, Sorcar-Max outperformed
the Houdini-based tool. Specifically, Sorcar-Max was able to verify 3 programs that
Neider et al.’s tool could not verify, whereas Neider et al.’s tool verified 2 programs that
Sorcar-Max could not verify. On programs that both tools were able to verify (57 programs
in total), Sorcar-Max took on average 20 s per program (and synthesized invariants with
an average number of 19 predicates). On the other hand, Neider et al.’s tool took on average

86



(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison of the time taken to verify a benchmark and the number of predicates
in the final invariant. Subfigures (a) and (b) compare Sorcar-Max and GPUVerify on the
first benchmark suite. Subfigures (c) and (d) compare Sorcar-Max and Neider et al.’s
tool on the second benchmark suite. Subfigures (e) and (f) compare Sorcar-Max and
Sorcar-Greedy on both benchmark suites.

87



45 s per program (and synthesized invariants with an average number of 37 predicates).
Figures 4.2e and 4.2f compare Sorcar-Max and Sorcar-Greedy on both benchmark

suits. The latter was slightly slower overall, but synthesized invariants with fewer predicates.

4.4.3 Comparison of Sorcar and Houdini-ICE

We performed additional experiments with Houdini-ICE (i.e., an implementation of
Houdini as a Horn-ICE learning algorithm based on the elimination algorithm). This
allowed us to force the number of counterexamples returned by Boogie in each round to be
the same for Sorcar and Houdini-ICE (a parameter over which we do not have control in
Boogie’s implementation of Houdini).

On the GPUVerify benchmark suite, Sorcar-Max verified 5 programs that Houdini-ICE
could not, whereas Houdini-ICE was able to verify 1 program that Sorcar-Max could
not. Houdini-ICE was also able to show 2 programs to not have a conjunctive invariant,
which Sorcar-Max could not. On programs that both were able to verify (233 programs in
total), both algorithms performed with similar times.
On the Dryad benchmark suite, Sorcar-Max was able to solve 1 more program than

Houdini-ICE (and verified all programs that Houdini-ICE verified). On the 59 programs
that both could verify, Sorcar-Max was roughly twice as fast (averaging 24 s per program
for Sorcar-MAX vs. 51 s per program for Houdini-ICE).

While Sorcar-Max still emerges better overall than Houdini-ICE, we are not entirely
sure why implementing Houdini as an external Horn-ICE learning algorithm makes it perform
much better than the internal implementation of Houdini in Boogie (the internal Houdini
algorithm within Boogie is embedded deep and is very hard to configure or control). For
the GPUVerify benchmarks, the tool GPUVerify does invariant synthesis without assertions
and then inserts assertions to verify the program, and this could be one difference. We leave
answering this question for future work.

4.5 RELATED WORK

Invariant synthesis lies at the heart of automated program verification. Over the years,
various techniques have been proposed, including abstract interpretation [118], interpo-
lation [107], IC3 [108], predicate abstraction [119], abductive inference [120], as well as
synthesis algorithms that rely on constraint solving [121, 122, 123, 147]. Complementing
these techniques are data-driven approaches that are based on machine learning. Examples
include Daikon [124] and Houdini [70], the ICE learning framework [45] and its successor

88



Horn-ICE learning [125, 126], as well as numerous other techniques that employ machine
learning to synthesize inductive invariants [47, 67, 127, 128, 129, 130, 148].

One potentially interesting question is whether ICE/Horn-ICE algorithms (and in particular,
Houdini and Sorcar) are qualitatively related to algorithms such as IC3 for synthesizing
invariants. For programs with Boolean domains, Vizel et al. [149] study this question and find
that the algorithms are quite different. In fact, the authors propose a new framework that
generalizes both. In the setting of this chapter, however, there are too many differences to
reconcile with: (a) IC3 finds invariants by bounded symbolic exploration, forward from initial
configurations and backward from bad configurations (hence inherently unfolding loops),
while ICE/Horn-ICE algorithms do not do that, (b) ICE/Horn-ICE algorithms instead use
implication/Horn counterexamples, which can relate configurations arbitrarily far away from
initial or bad configurations, and there seems to be no analog to this in IC3, (c) it is not clear
how to restrict IC3 to finding invariants in a particular hypothesis class, such as conjunctions
over a particular set of predicates, (d) IC3 works very closely with a SAT solver, whereas
ICE/Horn-ICE algorithms are essentially independent, communicating with the SAT/SMT
engine only indirectly, and (e) we are not aware of any guarantees that IC3 can give in terms
of the number of rounds/conjectures, whereas the ICE/Horn-ICE algorithms Houdini and
Sorcar give guarantees that are linear in the number of predicates. We believe that the
algorithms are in fact very different, though more general algorithms that unify them would
be interesting to study.
Learning of conjunctive formulas has a long history. An early example is the so-called

elimination algorithm [78], which operates in the Probably Approximately Correct Learning
model (PAC). Daikon [124] was the first technique to apply the elimination algorithm
in a software setting, learning likely invariants from dynamic traces. Later, the popular
Houdini [70] algorithm built on top of the elimination algorithm to compute inductive
invariants in a fully automated manner. In fact, as Garg et al. [46] and later Ezudheen et
al. [126] argued, Houdini can be seen as a learning algorithm for conjunctive formulas in
both the ICE and the Horn-ICE learning framework.

Using Houdini to compute conjunctive invariants over a finite set of candidate predicates
is extremely scalable and has been used with great success in several practical settings.
For example, Corral [143], which uses Houdini internally, has replaced Slam [150] and
Yogi [151], and is currently shipped as part of Microsoft’s industrial-strength Static Driver
Verifier (SDV) [141, 142]. GPUVerify [72, 73] is another example that uses Houdini with
great success to prove race freedom of GPU programs.

89



4.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we have developed a new class of learning algorithms for conjunctions,
named Sorcar, which are biased towards the simplest conjunctive invariant that can prove
the assertions correct. Sorcar is parameterized by functions to identify relevant predicates
and guarantees to learn an invariant in a linear number of rounds (if one exists). We
have shown that Sorcar proves programs correct significantly faster than state-of-the-art
Houdini-based tools.
There are several future directions to pursue. First, we believe that further algorithms

for learning conjunctions need to be explored. For instance, the Winnow algorithm [152]
learns from positive and negative samples in time O(r log n), where r is the size of the final
formula and n is the number of predicates. Finding Horn-ICE learning algorithms that
have such sublinear round guarantees can be very interesting as r is often much smaller
than n in verification examples. Second, we would like to use the new Sorcar algorithms
in specification mining settings where smaller invariants are valuable as they are read by
humans. Third, there are several types of inference algorithms similar to Houdini (see [153]),
and it would be interesting to explore how well Sorcar performs in such settings.

90



CHAPTER 5: LEARNING PRECONDITIONS AND POSTCONDITIONS
USING TEST GENERATORS AS ORACLES

In this chapter, we consider the problem of synthesizing contracts, where we propose
frameworks to synthesize precondition and postcondition of a method in a class of a program
in an object-oriented language. In this context, the natural oracle to use would be a verification
engine that verifies programs (with loops/recursion). However, verification engines that can
do completely automated program verification are not often effective or scalable. We hence
consider using test generators as teaching oracles.

Given a program annotated with preconditions and assertions, the test generator creates a
valid object state (using object modifying methods) and concrete input parameters of the
method that satisfy the precondition. Furthermore, several test generators are guided by the
assertions, and try to generate inputs that violate them.

Synthesizing Preconditions:

In the learning framework we develop for synthesizing preconditions, we use as counterex-
amples abstractions of the input states, which consists of the primitive type inputs, and the
valuations of a certain set of observer methods of the non-primitive-type input objects.

Each input state (and similarly for counterexample) created by the test generator, can
be either valid: execute successfully and terminate, or invalid: encounter an uncaught
exception, or result in an assertion violation. Note that the predicates used in the logic for
expressing preconditions and the observer methods for deriving properties of objects, create
abstractions of input states. Abstractions of invalid input states must be excluded by the
precondition. However, abstractions of valid input states need not necessarily be included in
the precondition, as there could be input states with the same abstraction but are invalid.

We define the problem of precondition synthesis using a notion of ideal preconditions. An
ideal precondition for a method with respect to a test generator is a precondition which
satisfies two properties. First, safety: the test generator should not be able to find any invalid
input state allowed by the precondition. Second is maximality: the precondition should
include as many valid input states as possible. More precisely, it can exclude an abstraction
of input states only if there exists some invalid input state that has this abstraction. The
maximality requirement intuitively captures the desire to synthesize weakest (most liberal)
preconditions.

In our learning framework, counterexamples are positively and negatively labeled abstrac-
tion of input states. The meaning of the counterexample is as follows. The learner needs

91



to find a formula in a fixed logic L that (a) excludes all negatively labeled inputs, and (b)
includes all positively labeled inputs i unless there is another sample i′ that is negatively
labeled and is indistinguishable from i by any formula in L.

The learning algorithms we propose for ideal preconditions first resolve all conflicts (conflicts
are pairs of samples labeled positive and negative that are indistinguishable by the logic L) by
reclassifying them as negative. A classification algorithm is then used to learn a hypothesis
precondition from the conflict resolved samples.

To summarize, our framework for precondition synthesis has the following features.

• The application is synthesizing precondition of a method of a class in an object oriented
program.

• The verification oracle is a test generator, which is inherently incomplete hence intro-
duces conflicting counterexamples.

• The counterexamples are valid and invalid abstractions of input states.

• We formulate the synthesis problem using the notion of an ideal precondition with
respect to the testing oracle and a particular logic L for stating preconditions.

• The learning algorithm to find an ideal precondition first resolves all conflicts in the
sample and then uses a classification algorithm that does not make any mistakes.

Synthesizing Conjunctive Postconditions

We propose a framework to synthesize conjunctive postconditions of a method using a test
generator as the oracle. We assume that the method is already annotated with a precondition,
which prevents all exception failures (this can be done using the precondition synthesis
mentioned above). Synthesized postconditions need to be strong, and ideally the strongest
postcondition expressible in a given logic.
In a learning framework, the test generator can only provide pairs of feasible input-

output states (where input states satisfy the precondition). Consequently, given a hypothesis
postcondition, a test generator can refute that the postcondition is correct by giving executions
that end in states that are not satisfied by the postcondition. However, it cannot refute
the assertion that the postcondition is the strongest one. In terms of counterexamples, we
can think of the test generator as being able to only provide positively labeled pairs of
abstractions of input and output states.

92



We propose to learn postconditions in a logic that consists of conjunctions of (a) predicates
over a fixed set P and (b) an equality expression that defines an output as a function of the
input. The predicates P and the parameters for the functions synthesized are based on input
parameters and abstractions of objects using observer methods.
The above logic facilitates learning tight concepts (as the above logic is closed under

conjunction). We synthesize functional relationships between input and output using a
SyGuS solver. We then seed this as equality predicates and add them to P , and then use the
elimination algorithm [78] to learn the semantically smallest conjunctive formula over the
predicates that includes all the positive counterexamples.

In summary, our learning framework for postcondition synthesis has the following features:

• The application is to learn a strong conjunctive postcondition of a method that is
already annotated with a precondition.

• The counterexamples in this framework are only positive. The oracle is a test generator,
and counterexamples are abstractions of pairs of input and output states that are
always classified positively.

• The learning algorithm first synthesizes new predicates using a SyGuS solver and then
uses the elimination algorithm to learn the tightest conjunctive postcondition.

5.1 INTRODUCTION

We present a novel counterexample guided inductive synthesis (CEGIS) framework, to
synthesize stateful preconditions, with the help of a test generator as the verification oracle
with the precondition being guaranteed to be safe and maximal with respect to the given
test generator.

We assume that we have a method m(~p) with formal parameters ~p and assertions in it for
which we want to synthesize a precondition, such that the synthesized precondition satisfy
two requirements: (a) be safe, the test generator cannot find a precondition-satisfying input
whose execution leads to an exception (either a runtime exception such as division by zero
or an assertion-violating exception), and (b) be maximal, the test generator cannot find an
input disallowed by the precondition whose execution does not lead to any exception, Since
we do not know a priori the precise set of inputs on which the method throws an exception
and does not throw exceptions, respectively, we resort to obtaining this information from a
test generator.

93



Defining the precondition synthesis formally modulo a test generator is complicated by
three main aspects of the problem:

1. Incomplete information of object state: One fundamental aspect of our problem is that
the client does not know precisely the internal states of objects (the receiver object state
and state of other objects given as parameters ~p) on which the precondition depends
on. We propose a set of observer methods that give properties of these objects, allowing
the client to have incomplete information about them gleaned from the return values
of observer methods. We define a feature vector ~f as a vector of values of the primitive
parameters in ~p and the return values of the observer methods on the object states,
hence enabling the precondition to state restrictions using these features (typically,
the features are of primitive types). This abstraction is not all bad as the learned
precondition can express abstract properties of the non-primitive-type objects while
avoiding revealing implementation details (e.g., primitive-type object fields recursively
reachable from an input object along with the heap structure of an input object).
However, using observer methods and feature vectors intrinsically introduces incomplete
information about the object state as several different input states can have the same
feature vector.

2. Incomplete test generator: Given a method and a precondition for it, the test generator
can find input states that the precondition should disallow as the method can throw
an exception on these input states and find input states that the precondition should
allow as the method does not throw any exception on these input states. A feature
vector is valid (or invalid) if the method can throw an exception on none (or one) of
all input states conforming to the feature vector. Inherently the test generator cannot
guarantee feature vectors to be valid (but can certify invalid feature vectors). First, the
test generator can tentatively label certain vectors as valid, and later change its mind
and label these vectors invalid. Learning of preconditions hence needs to accommodate
such fluctuations.

3. Expressiveness of the logic: The logic used for expressing the precondition may not
be expressive enough to distinguish two feature vectors, one being valid and the other
being invalid. In other words, there is another level of abstraction caused by the
logic, in addition to the abstraction induced by the use of observer methods, and the
precondition must be permitted to disallow certain positive feature vectors.

Notice that if we can find an input state that conforms to a precondition ϕ on which the
program throws an exception, we can deem the precondition to be unsafe, and declare the

94



feature vector corresponding to that input state as invalid. However, execution of the method
on a single input state cannot show ϕ to be non-maximal. If the testing tool finds a valid
input state s1 disallowed by ϕ, we still cannot say that the feature vector corresponding to
the input state is valid. The reason is that there may be another invalid input state s2 that
conforms to the same feature vector.

Intuitively, witnessing non-maximality boils down to finding a valid feature vector disallowed
by ϕ such that all input states conforming to the feature vector are valid. The ∃∀ nature of
the question is what makes finding counterexamples for maximality hard using test generation.
(Even logic-based tools, such as Pex, that use SMT solvers are typically effective/decidable
for only ∃∗ properties, i.e., quantifier-free formulas.) On the other hand, finding an invalid
feature vector (included by ϕ) asks whether there exists a feature vector allowed by ϕ such
that there does exist an invalid input state conforming to the feature vector; this question is
an ∃∃ question that can be found using tools such as Pex.
We shape the definition of our problem with respect to a test generator, which we call a

testing-based teacher (TBT ). A TBT can be seen as a function that takes a method m, a
precondition ϕ for m, and generates a finite set of input states for m (that may or may not
be allowed by ϕ) and whether they are valid or not.

Note that we denote the TBT as a function; hence, for any method and precondition, we
expect the TBT to be deterministic, i.e., it produces the same set of test inputs across rounds
for a given precondition. This assumption is not a limitation of our framework, but a way to
formalize a TBT . Any testing-based tool can be made deterministic by fixing its random
seeds, and by fixing configurable bounds such as the number of branches explored, etc.

We introduce the notion of an ideal precondition that captures both safety and maximality
modulo the incomplete information that the client has of the object state and modulo the
expressiveness of the logic, with respect to the TBT . The safety property demands that the
TBT is not able to find any invalid input state allowed by the precondition (i.e., one on
which m throws an exception). The maximality property requires that for any valid input
state found by the TBT but disallowed by the precondition, there must be some invalid
input state (returned by the TBT allowed by some precondition, not necessarily ϕ), such
that these two states cannot be distinguished by the logic L. We aim to synthesize an ideal
precondition for m(~p) with respect to the TBT .

We propose a general learning framework for synthesizing ideal preconditions with respect
to a testing-based teacher (TBT). It consists of five distinct components: (1) a passive
learner (precondition synthesizer) that synthesizes preconditions from positive and negative
feature vectors, (2) a TBT, interacting in rounds of communication with the learner, that
returns valid/invalid input states, (3) a featurizer that converts valid/invalid input states to

95



positive/negative feature vectors, and (4) a conflict resolver (CRL), that resolves conflicts
(created by incomplete information) by changing positive feature vectors to negative ones when
necessary. We emphasize that one can use any standard passive learner in this framework as
long as it finds formulas that are consistent with the set X of labeled feature vectors.

The framework maintains a set X, which contains the accumulated set of (conflict-resolved)
positive/negative labeled feature vectors that the TBT has returned. In each round, the
learner proposes a precondition that is consistent with the set, and the TBT returns a set of
valid and invalid input states. The featurizer, with the help of observer-method calls, converts
the input states to positive/negative labeled feature vectors. We add the counterexample
input states to X and call the conflict resolver for the logic L, and update X. We then
check whether the current conjecture is consistent with the updated X—namely whether ϕ
is true on every positive feature vector and false on every negative feature vector. If it is,
then we exit having found an ideal precondition, and if not, we iterate with the precondition
synthesizer for the new set X.
We show that our framework is convergent (i.e., guaranteed to terminate). When the

following conditions are met: (1) the hypothesis space H of preconditions is finite, (2) the
logic is closed under Boolean operations, and (3) the learner is able to always produce
formulas consistent with samples when they exist, we are guaranteed to converge to an ideal
precondition.

We implement a prototype of our framework in a tool called Proviso using a learner based
on the ID3 classification algorithm [75], a powerful classification algorithm in the machine
learning community, and Pex [76], an industrial test generator based on dynamic symbolic
execution [154, 155], shipped as IntelliTest in the Microsoft Visual Studio Enterprise Edition
since 2015.
We also instantiate the framework for two important tasks in specification inference:

runtime-failure prevention and conditional-commutativity inference [77]. The former problem
asks to synthesize preconditions that avoid runtime exceptions of a single method. The
latter problem asks, given two methods, a precondition that ensures that the two methods
commute, when called in succession.

5.2 SYNTHESIZING PRECONDITIONS

5.2.1 An Illustrative Example

We next show how our framework is instantiated for the task of conditional-property
inference and then illustrate through an example how our approach addresses the precondition

96



[PexMethod]
public void PUT-CommutativityAddContains(ArrayList s1, int x, int y)
{

ArrayList s2 = new ArrayList(s1); //clone s1
int a1, a2; bool ad1, ad2;

//First Interleaving
a1 = s1.Add(x);
ad1 = s1.Contains(y);

//Second Interleaving
ad2 = s2.Contains(y);
a2 = s2.Add(x);

PexAssert.IsTrue(a1 == a2 && ad1 == ad2 && Equals(s1, s2));
}

Figure 5.1: Encoding conditional property: Commutativity conditions for methods Contains
and Add from the ArrayList class in the .NET Library.

synthesis problem.
Let us first model the problem of conditional-commutativity inference (finding conditions

under which two methods commute) as a problem of precondition synthesis. Consider the
parameterized unit test [156] in Figure 5.1. The method PUT_CommutativityAddContains

checks whether the methods of an arraylist, Add and Contains, commute when called with an
arraylist s1, and for particular parameter inputs. The method Add(x) returns the index at
which x has been added, and Contains(y) returns true if y is in s1 and false otherwise. To
check for commutativity, the test method first clones the input arraylist s1 into s2. It then
calls the method sequence Add(x) and Contains(y) on s1, and Contains(y) and Add(x) on
s2. Finally, it checks whether the return values of the methods and resulting objects s1, s2
are equal. If they are not, the methods do not commute and hence it raises an exception;
it follows that the precondition for the method PUT_CommutativityAddContains to prevent
exceptions (e.g., assertion failure) is precisely the condition under which the two methods
Add(x) and Contains(y) commute.

To synthesize stateful preconditions, we instantiate our framework by fixing a logic L of
octagonal constraints, by fixing a conflict resolver, a component that effectively relabels
positive feature vectors to negative ones when necessary (see Section 5.2.3.1 for details), by
fixing an exact learning engine, decision-tree learning, and by fixing a test generator, Pex. As
inputs, our approach takes a method m (e.g., Figure 5.1) for precondition synthesis and a set
of Boolean and integer observer methods in the ArrayList class, ObsB = {Contains(int)}

97



and ObsZ = {Count, IndexOf(int), LastIndexOf(int)}, respectively. Our approach uses
these observer methods and primitive parameters of m to generate a feature vector ~f by
applying those methods using various combinations of parameters of m:
[s1.Count(), x, y, s1.IndexOf(x), s1.IndexOf(y), s1.LastIndexOf(x), s1.LastIndexOf(y),
s1.Contains(x), s1.Contains(y)].

Next we demonstrate how our algorithm proceeds. A set X (initially empty) of cumulative
positive and negative feature vectors is maintained. Our algorithm proceeds in rounds: the
learner begins by proposing a conjectured precondition, the testing-based teacher generates
counterexamples. To generate negative counterexamples, the teacher generates inputs that
are allowed by the conjectured precondition but cause the method to fail. To generate
positive counterexamples, the teacher generates inputs that are disallowed by the conjectured
precondition and do not cause the method to fail. These counterexamples are given to a
conflict resolver, which then relabels a positive counterexample c to negative if in X there is
a negative counterexample c′ that is L-indistinguishable from c. The algorithm then checks
whether the current conjectured precondition is consistent with the updated set X (i.e., the
conjectured precondition allows the positive feature vectors in X and disallow the negative
feature vectors in X): if yes, we stop and output the precondition; otherwise, we proceed
to the next round. We elaborate the role of the conflict resolver and the soundness of the
preceding technique in the rest of the chapter.
To illustrate the conflict resolver on this example, we assume that no observer methods

are given, and the feature vector is ~f ′ = [x, y]. The learner begins by proposing true, and
the testing-based teacher produces negative counterexamples ([0, 0],−), ([10, 10],−), being
added to X (which is initially empty). The precondition true is not consistent with X and
so we proceed with the next round. The learner next proposes false (as it is consistent with
X). The teacher then generates two positive feature vectors ([0, 0],+) and ([8, 9],+). At
this point, we have encountered conflict. X has a negative feature vector ([0, 0],−) and
an L-indistinguishable positive vector ([0, 0],+). The conflict resolver relabels ([0, 0],+) to
([0, 0],−). Again, the current conjecture false is not consistent with the updated X and so
we proceed. This process (in our tool) continues for 4 rounds when the learner ultimately
proposes (x 6= y), which is consistent with all vectors that the test generator returns, and we
stop and return (x 6= y) as the precondition. When the feature vector (~f) mentioned earlier
includes all the observer methods, the preceding conflict does not occur, and the learner
synthesizes the precondition (x = y ∧ s1.Contains (x)) ∨ (x 6= y).
A crucial aspect here is that the testing-based teacher helps the learner by generating

counterexamples that show the conjectured precondition to be unsafe or non-maximal. We
terminate only when the learner is able to convince the test generator that the precondition

98



is safe and maximal (modulo the power of the test generator).

5.2.2 Problem Formalization of Precondition Synthesis Modulo a Test Generator

In this section, we formalize the problem of synthesizing preconditions with the aid of a
test generator.

We assume that we have a method m(~p) with formal parameters ~p and assertions in it for
which we want to synthesize a precondition. Intuitively, we want the precondition to satisfy
two requirements: (a) be safe, in the sense that the method when called with any state
allowed by the precondition does not throw an exception (either a runtime exception such as
division by zero or an assertion-violating exception), and (b) be maximal, in the sense that it
allows as many inputs as possible on which the method does not throw an exception. Since
we do not know a priori the precise set of inputs on which the method throws an exception
and does not throw exceptions, respectively, we resort to obtaining this information from a
test generator.

Challenges in defining the problem and framework. Defining the precondition syn-
thesis formally modulo a test generator is complicated by three main aspects of the problem:
− Incomplete information of object state: Preconditions can depend on the receiver object
state of the method m() for which we are synthesizing the precondition for, and the state of
objects that are passed as parameters to m(). We propose a set of observer methods that
give properties of these objects, and allow the precondition to state restrictions using these
properties. We hence work with feature vectors, which capture the return values of observer
methods on objects. However, using observer methods intrinsically introduces incomplete
information about the object state: several different input states can have the same feature
vector.
− Incomplete test generator: Given a method and a precondition for it, the test generator can
find input states that the precondition should disallow as the method can throw an exception
on these input states and find input states that the precondition should allow as the method
does not throw any exception on these input states. A feature vector is valid (or invalid) if
the method can throw an exception on none (or one) of all input states conforming to the
feature vector. However, since we work with an abstraction of input states using feature
vectors, we need a test generator to find valid feature vectors and invalid ones. It turns out
that given a precondition, a test generator can readily be adapted to find invalid feature
vectors, but not valid ones. Consequently, we need to work with a test generator that may
mark a feature vector tentatively valid, and then later change its mind and find it invalid.

99



Learning of preconditions hence needs to accommodate such fluctuations.
− Expressiveness of the logic: The logic used for expressing the precondition may not be
expressive enough to distinguish two feature vectors, one being valid and the other being
invalid. In other words, there is another level of abstraction caused by the logic, in addition
to the abstraction induced by the use of observer methods, and the precondition must be
permitted to disallow certain positive feature vectors.

Our solution to the preceding challenges involves (1) defining the precondition synthesis
problem as synthesizing an ideal precondition (Definition 5.2), where the notion of an ideal
precondition accommodates the fluctuations of a test generator, and (2) a framework that
synthesizes ideal preconditions using a conflict resolver (Section 5.2.3 and Figure 5.2) that
manipulates counterexamples returned by the test generator in each round. We emphasize
that the component for synthesizing formulas from the (conflict-resolved) counterexamples
is standard, and we can use a variety of learning algorithms from the literature. However,
arguing convergence of such learning algorithms in learning ideal preconditions in the presence
of the conflict resolver has to be argued anew (Section 5.2.3.3).

We next formalize the notions of programs, valid and invalid input states, and testing-based
teachers (Section 5.2.2.1), and then formalize the problem of precondition synthesis modulo
a testing-based teacher using the notion of an ideal precondition (Section 5.2.2.2).

5.2.2.1 Observer Methods, Logic for Preconditions, and Testing-Based Teachers

Methods. Let us fix a set of types T , including primitive types and classes. Each type
t ∈ T is associated with a data domain D(t) that denotes the set of values that variables of
type t range over. In the following, we assume that each variable v has an implicit type t
associated with it. In addition, we denote D(t) by simply using D(v).

We assume that we have a target method m(~p) with formal parameters ~p that we want to
synthesize a precondition for.

Let us also fix a set of pure (i.e., side-effect free) observer methods F = {f1(~p1), . . . , fn( ~pn)}
that return a primitive type. These methods help query properties of the state of the objects
whose class defines these methods. For a method m with input parameters ~p that we aim to
find a precondition for, we allow the precondition to express properties of ~p using constraints
on variables of primitive types in ~p as well as the return values of observer methods that
return a value of primitive type when called with tuples of parameters drawn from ~p.
We have, apart from the above, other methods for classes (including constructors and

mutating methods, i.e., those that mutate the object). The test generator can use these

100



methods to create valid object states, by using method sequences composed of constructors
and mutating methods.
Let us now define the semantics of the methods abstractly. For any class c, let Sc denote

the set of valid states of the object of the class c (Sc can be infinite, of course, and denotes
the set of valuations and heaps maintained by the public/private fields in the class). Note
that we assume that the set Sc contains valid object states, i.e., reachable states from initial
object construction. For each parameter p of type class c, let us denote by D(p) the valid
states Sc.
The semantics of the observer method fi(~pi) is given by a (complete) function JfiK :
D(~pi) −→ Di, where Di is the data domain for the return primitive type of method fi. Note
that the observer methods return properties of the state of the object but do not change the
state. Note also that we require these observer methods not to throw exceptions, and hence
model their semantics using complete functions.

The semantics of the method m(~p) is given by a partial function JmK : Sc×D(~p) ⇀ Sc×D,
where c is the class that m belongs to and D is the data domain for the return type of m
(whether it be of primitive type or a class).

Valid and invalid input states. An input state for m(~p) is pair (s, v) ∈ Sc×D(~p) where
c is the class that method m belongs to and v is a valuation of the parameters in ~p of method
m. Note that the input state contains the receiver object state namely s of m, and the values
of the parameters in ~p (some of which can be object states as well of their respective classes).

We say that an input state (s, v) is an invalid input state for m if m throws an exception1

on that input state i.e., JmK is undefined on (s, v). We say that an input state (s, v) is a
valid input state for m if (s, v) is not an invalid input state.

Feature vectors. One fundamental aspect of our problem is that the client does not know
precisely the internal states of objects (the receiver object state and state of other objects
given as parameters), but has incomplete information about them gleaned from the return
values of observer methods.

We define a feature vector ~f as a vector of values of the primitive parameters in ~p and
the values of observer methods on the object states (called with various combinations of
parameters from ~p). Typically, the features are of primitive types (integer and Boolean in
our tool).

1Note that in this chapter, when we say an exception, we refer to an uncaught exception as unexpected
program behaviors such as DivideByZeroException. Assertion violation can also cause an uncaught exception
to be thrown.

101



Logic for expressing preconditions. The logic L, for expressing preconditions for a
method m(~p) in this chapter is quantifier-free first-order logic formulas. Recall that classical
first-order logic is defined by a class of functions, relations, and constants. We choose this
vocabulary to include the following: (a) the usual vocabulary over the various primitive
data domains that the program operates on (Booleans, integers, strings, arrays of integers,
etc.), and (b) observer methods as functions. The logic then allows quantifier-free formulas
with free variables ~p. Note that such a formula ϕ, when interpreted at a particular program
state (which gives meaning to various objects and hence to corresponding observer methods),
defines a set of input states—the input states (s, v) such that when observer methods are
interpreted using the state s, and input parameters ~p are interpreted using v, the formula
holds. Hence, a logical formula represents a precondition—the set of states that satisfy the
formula being interpreted as the precondition.

Note that the logic cannot distinguish between two input states that have the same feature
vector. We can in fact view logical formulas as defining sets of feature vectors. The logic
hence introduces a coarser abstraction of feature vectors (which themselves are abstractions
of input states).
For the tool and evaluation in this chapter, the logic L is a combination of Boolean

logic and octagonal constraints on integers; the observer methods work on more complex
datatypes/heaps (e.g., stacks, sets), returning Booleans or integers as output (e.g., whether a
stack is empty, the size of a set container).

Testing-based teachers and counterexamples. The general problem of precondition
synthesis is to find a precondition expression ϕ (in logic L) that captures a maximal set
of valid feature vectors (where a valid feature vector is one whose conforming input states
are all valid) for the method m. This synthesis problem is clearly undecidable. In fact,
checking whether m throws an exception on even a single input state is undecidable. Proving
a precondition to be safe requires verification, a hard problem in practice, and current
automatic verification techniques do not scale to large code bases.

We hence shape the definition of our problem with respect to a test generator, which we call
a testing-based teacher (TBT ). (We call it a teacher as it teaches a learner the precondition.)
A TBT is just a test generator that generates test input states for m. Ideally, we would

like the TBT to be guided to find test input states for showing that a given precondition ϕ
is not safe or maximal, i.e., input states allowed by ϕ on which m throws exceptions and
input states disallowed by ϕ where m does not throw an exception (hence property-driven
testing tools such as Pex are effective, but not testing tools such as Randoop that generate
random inputs).

102



Formally,

Definition 5.1 (Testing-based teacher). A testing-based teacher (TBT ) is a function that
takes a method m, a precondition ϕ for m, and generates a finite set of input states for m
(that may or may not be allowed by ϕ) and whether they are valid or not.

Note that in our formulation, the TBT is a function; hence, for any method and precondi-
tion, we expect the TBT to be deterministic, i.e., it produces the same set of test inputs
across rounds for a given precondition. This assumption is not a limitation of our framework,
but a way to formalize a TBT . Any testing-based tool can be made deterministic by fixing
its random seeds, and by fixing configurable bounds such as the number of branches explored,
etc. We do not require a TBT to report all or any input states. The TBT is incomplete and
may not be able to find a counterexample (for safety or maximality), even if one exists.

Given a method m and a precondition ϕ for it, we can examine the test inputs generated by
the TBT to check whether they contain counterexamples. An input state that is allowed by ϕ
but leads m to throw an exception shows that ϕ is not safe, and is a negative counterexample.
An input state that is disallowed by ϕ and on which m executes without throwing any
exception indicates potentially that ϕ may not be maximal, and we call this input state a
positive counterexample. (As we shall see, such counterexample does not necessarily indicate
that ϕ is not maximal.)

We are now ready to define the goal of precondition generation parameterized over such a
TBT . Roughly speaking, we want to find maximal and safe preconditions expressible in our
logic; however, the precise definition is more subtle as we describe next.

5.2.2.2 Precondition Synthesis Modulo a Testing-Based Teacher

Incomplete information. Since the learner learns only with respect to an observer ab-
straction in terms of feature vectors, we assume that input states returned by the testing-based
teacher are immediately converted to feature vectors, where the feature values are obtained
by calling the respective observer methods. We also refer to feature vectors as positive or
negative counterexamples, if the conforming input states are positive or negative, respectively.

For any feature vector ~f , there are, in general, several input states that are conforming to
~f (i.e., those input states whose features are precisely ~f). Recall that a feature vector ~f is
valid if all input states conforming to it are valid input states; a feature vector ~f is invalid if
it is not valid—i.e., there is some invalid input state whose feature vector is ~f .

103



It turns out that incomplete information the client has about the object state creates many
complications. In particular, a testing tool can find invalid feature vectors but cannot find
valid feature vectors using test generation.

Consider a method m and a precondition ϕ for it. The precondition defines a set of feature
vectors, which in turn define a set of input states. Notice that if we can find an input state
that conforms to ϕ on which the program throws an exception, we can deem the precondition
to be unsafe, and declare the feature vector corresponding to that input state as invalid. We
name such feature vectors negative counterexamples, and a testing tool can find these invalid
vectors.

However, notice that an execution of the method on a single input state cannot show ϕ

to be non-maximal. If the testing tool finds a valid input state (s, v) disallowed by ϕ, we
still cannot say that the feature vector corresponding to the input state is valid. The reason
is that there may be another invalid input state (s′, v′) that conforms to the same feature
vector. Intuitively, witnessing non-maximality boils down to finding a valid feature vector.
This situation is the same as asking whether there exists a feature vector disallowed by ϕ
such that all input states conforming to the feature vector are valid. The ∃∀ nature of the
question is what makes finding counterexamples for maximality hard using test generation.
(Even logic-based tools, such as Pex, that use SMT solvers are typically effective/decidable
for only ∃∗ properties, i.e., quantifier-free formulas.) On the other hand, finding an invalid
feature vector (included by by ϕ) asks whether there exists a feature vector allowed by ϕ such
that there does exist an invalid input state conforming to the feature vector; this question is
an ∃∃ question that can be found using tools such as Pex.

Formalizing precondition generation modulo a testing-based teacher. As ex-
plained earlier, for a precondition ϕ, an invalid input state (allowed by ϕ) found by a
testing-based teacher (TBT) is a witness to the fact that ϕ is unsafe, i.e., no safe precondition
should allow this input state.

Valid input states ((s, v),+) found by the TBT but disallowed by the current precondition
indicate that the precondition may potentially not be maximal, as it disallows an input state
where m does not throw an exception. However, we do not want to demand that we find a
precondition that definitely allows (s, v). The reason is that such a requirement is too strong
as there may be another input state of the form ((s′, v′),−) that conforms to the same feature
vector as (s, v). Another reason is that even if the feature vectors are not the same, the logic
may be unable to distinguish between the two vectors. In other words, it may be the case
that no precondition expressible in our logic is both safe and allows this positive example
(s, v).

104



We next define the notion of an ideal precondition that captures both safety and maximality
modulo the incomplete information that the client has of the object state and modulo the
expressiveness of the logic, with respect to the TBT . First, let us define some terminology:
for any two input states (s, v) and (s′, v′), we say (s, v) is L-indistinguishable from (s′, v′) if
there is no formula (in the logic L) that evaluates to true on one of them and false on the
other (note that if the two input states conform to the same feature vector, then they are
indistinguishable no matter the logic). In a similar way, we define L-indinguishability for
feature vectors.

Definition 5.2. An ideal precondition for m(~p) with respect to a TBT is a precondition ϕ
in the logic L such that ϕ satisfies the following two conditions:

• Safety wrt TBT: the TBT returns a set that has no invalid input state allowed by ϕ.

• Maximality wrt TBT: for every valid input state ((s, v),+) returned by the TBT
but disallowed by ϕ, there is some invalid input state ((s′, v′),−) (returned by the TBT
allowed by some precondition) that is L-indistinguishable from (s, v).

Intuitively, the first condition of safety demands that the TBT is not able to find any
invalid input state allowed by the precondition (i.e., one on which m throws an exception).
The second condition states that for any valid input state (s, v) found by the TBT but
disallowed by the precondition, there must be some invalid input state (returned by the TBT
allowed by some precondition, not necessarily ϕ) that is L-indistinguishable from (s, v).

A precondition on which the TBT returns the empty set is hence also an ideal precondition.
Note that in general, there may be no unique safe and maximal precondition.
We can now state the precise problem of precondition generation modulo a TBT :

Problem Statement 5.1. Given a program with the method m(~p) and observer methods
and a logic L for expressing preconditions for m, and given a testing-based teacher TBT ,
find an ideal precondition for m(~p) with respect to the TBT .

5.2.3 The Learning Framework for Synthesizing Preconditions Modulo a Test Generator

In this section, we describe our general learning framework for synthesizing ideal precondi-
tions with respect to a testing-based teacher (TBT).
We first describe this framework (Section 5.2.3.1) and then discuss multiple ways to

instantiate the framework (Section 5.2.3.2). Adapting a TBT to realize this framework is
discussed in Section 5.2.4. Finally, in Section 5.2.3.3, we discuss general conditions under

105



Figure 5.2: The learning framework for synthesizing ideal preconditions with respect to a
TBT.

which we can show that our learners and learning framework converge to an ideal precondition
with respect to any TBT.

5.2.3.1 Framework Overview

Our learning framework, depicted in Figure 5.2, consists of five distinct components: (1) a
passive learner (precondition synthesizer) that synthesizes preconditions from positive and
negative feature vectors, (2) a TBT, interacting in rounds of communication with the learner,
that returns valid/invalid input states, (3) a featurizer that converts valid/invalid input states
to positive/negative feature vectors, and (4) a conflict resolver (CRL), which is the main
novel component, that resolves conflicts (created by incomplete information) by changing
positive feature vectors to negative ones when necessary. We emphasize that one can use any
standard passive learner in this framework as long as it finds formulas that are consistent
with the set X of labeled feature vectors.

The framework maintains a set X, which contains the accumulated set of (conflict-resolved)
positive/negative labeled feature vectors that the TBT has returned. In each round i, the
learner proposes a precondition ϕi that is consistent with the set, and the TBT returns
a set of valid and invalid input states. The featurizer, with the help of observer-method
calls, converts the input states to positive/negative labeled feature vectors Ci. We add the
counterexample input states to X and call the conflict resolver for the logic L, and update X.
We then check whether the current conjecture ϕi is consistent with the updated X—namely
whether ϕ is true on every positive feature vector and false on every negative feature vector.

106



Figure 5.3: An example of conflict resolution where positive vectors are made negative.
Partitions denote equivalence classes of indistinguishable vectors; points denote positive and
negative feature vectors. The shaded region denotes a consistent precondition.

If it is, then we exit having found an ideal precondition, and if not, we iterate with the
precondition synthesizer for the new set X.

Conflict resolver. Formally, the conflict resolver, given a set X of positive and negative
feature vectors, returns the set of positive and negative feature vectors such that

• the returned set contains every feature vector (in X) that is negative;

• for any positive feature vector (~f,+) in X, if there is a negative feature vector (~f ′,−)
in X such that ~f and ~f ′ are L-indistinguishable, then the returned set contains the
negative feature vector (~f,−); otherwise, the set contains the positive feature vector
(~f,+).

To understand why the conflict resolver working as above is a sound way to obtain ideal
preconditions, recall the two properties of ideal preconditions in Definition 5.2: safety wrt
TBT and maximality wrt TBT. The conflict resolver keeps negative feature vectors as they
are (since safety wrt TBT requires that the precondition exclude them). However, when a
positive feature vector has a corresponding indistinguishable negative feature vector (returned
by the TBT in this round or a previous round), it is clear that no precondition expressible
in the logic can include the positive feature vector. Hence the conflict resolver turns it
negative, which is allowed by the definition of maximality wrt TBT in the definition of ideal
preconditions.
Figure 5.3 shows an example of the effect of a conflict resolver— it converts two positive

feature vectors to negative ones since they have corresponding negative feature vectors (in
X) that are not distinguishable from them. A consistent precondition (shown as the shaded

107



region) consists of some equivalence classes of indistinguishable feature vectors that include
the positive vectors and exclude the negative ones, after conflict resolution.

Notice that in any set X of counterexamples accumulated during the rounds, X is a subset
of the set of all counterexamples that TBT returns on all possible preconditions. Hence it is
easy to see that if ϕi is consistent with the conflict-resolved set obtained from X ∪Ci, then it
is in fact ideal (for every positive counterexample disallowed by ϕi, in X there is a negative
counterexample (returned by the TBT) being indistinguishable). Consequently, ϕ is ideal
when the learning framework terminates.

5.2.3.2 Instantiations of the Framework

Our framework can be instantiated by choosing a logic L, choosing any synthesis/learning
engine for exactly learning logical expressions in L, and building conflict resolvers for L. We
next list multiple such possibilities.

Logic for preconditions. We can instantiate our framework to the logic LB,Z described
below for expressing preconditions. Let us assume that feature vectors consist of a set of
Boolean features P = {α1(~p), . . . , αn(~p)} and a set of integer features N = {r1(~p), . . . , rt(~p)}.
Note that these features all depend on the parameters ~p, and can be either Boolean or integer
parameters in ~p or calls to observer methods (using parameters in ~p) that return Booleans or
integers. The grammar for the logic LB,Z of preconditions that we consider is

ϕ ::− α(~p) | r(~p) ≤ c | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ (5.1)

where α ∈ P , r ∈ N , and c ∈ Z.
We also consider certain sublogics of the preceding logic; one being of particular interest is

discussed in Section 5.2.3.3 on convergence, where we require the threshold constants c to be
from a finite set of integers B.

Learners. By treating the Boolean and integer features as Boolean and integer variables,
we can use exact learning variants of the ID3 algorithm for learning decision trees [59, 75] in
order to synthesize preconditions for the logic LB,Z. It is easy to adapt Quinlan’s decision
tree learning algorithm (which synthesizes small trees using a greedy algorithm guided by
statistical measures based on entropy) to an exact learning algorithm [46]. In our evaluation
(Section 5.2.5), we mainly use such a learner.

A second and more expressive choice is to use passive learners expressed in the syntax-guided

108



synthesis framework (SyGuS [1]). This framework allows specifying a logic syntactically
(using standard logic theories) and allows a specification expressing properties of the formula
to be synthesized. By making this specification express that the formula is consistent with
the set of samples, we can obtain a passive learner that synthesizes expressions. The salient
feature here is that instead of having a fixed set of predicates (like in the preceding decision-
tree algorithm), predicates are dynamically synthesized based on the samples. There are
multiple solvers available for the SyGuS format, as it also is part of a synthesis competition,
and learners based on stochastic search, constraint solving, and combinations with machine
learning are known [65, 157, 158]. In fact, one recent tool named PIE [133] is similar to a
SyGuS solver and can be used as a passive learner too. We have, in our evaluation, tried
multiple SyGuS solvers and also the PIE passive learner.

Conflict resolvers. Conflict resolver algorithms crucially depend on the logic. For the
preceding logic LB,Z with Boolean and integer features, it is easy to see that any two feature
vectors that are different are in fact separable using the logic, as each vector can be isolated
from the rest. Consequently, the conflict resolver simply changes a positive feature vector to
negative iff the same feature vector also occurs negatively in the set X.

Consider now the same preceding logic LB,Z but where we require the threshold constants
c to be bounded—i.e., |c| < b, where b is a fixed natural number. It is easy to see that a
conflict resolver for this logic needs to turn a positive feature vector ~f to negative iff there is
a negative feature vector ~g that agrees with ~f on all Boolean features and, for each integer
feature, either ~f and ~g both have the same feature value or the feature values in ~f and ~g
are both larger than b or both smaller than −b. The implementation of this algorithm is
straightforward.

5.2.3.3 Convergence of Learning

We argue earlier that if the learning framework, instantiated with any learner, terminates,
then it has computed an ideal precondition. In this section, we consider settings where the
learning framework is also convergent (i.e., is guaranteed to terminate).

Let us fix a testing-based teacher TBT and let us assume that there is (at least) one target
concept ϕ∗ in L such that if C is the set of all counterexamples returned by the TBT (in
response to any possible precondition), then ϕ∗ is consistent with C.
We consider the case when the hypothesis space H of preconditions is finite, i.e., when

the number of possible preconditions is finite, and when the logic is closed under Boolean
operations. For the logic LB,Z, this finite space naturally occurs when the features are

109



all Boolean or when we fix a certain finite set of constants for thresholds for numerical
inequalities, e.g., [−b,+b] for some b ∈ N. We can now show that our learning framework
where the learner is any learner that learns consistent formulas is guaranteed to find an ideal
precondition with respect to the TBT.

Theorem 5.1. Let the logic for preconditions be any finite hypothesis space of formulas H
that is closed under conjunctions, disjunctions, and negation. Consider any instantiation
of the learning framework with any conflict resolver and any learner that always returns a
concept consistent with all the given labeled feature vectors, if one exists. Then for any method
m(p), the learning framework is guaranteed to terminate and return an ideal precondition for
m, provided that m has an ideal precondition expressible in the logic.

Proof. We argue that the learner can always return a hypothesis consistent with the samples
in each round, and that when it first repeats the conjecture of a hypothesis H, the hypothesis
H must be an ideal precondition. The reason for the latter is that when H was first proposed,
the teacher returned a set of counterexamples. Later, if the learner proposed H, it must be
that H is consistent with those counterexamples; this situation would happen since in the
interim when H was proposed, the teacher would have returned at least one indistinguishable
negative counterexample for each positive counterexample disallowed by H. Hence H would
be ideal. Given that the hypothesis space is finite, the learner must eventually repeat a
hypothesis, and hence always converges.

The reason why any consistent learner always finds some logical formula that satisfies the
set of (conflict-resolved) samples is as follows. First, let Ĥ denote the tightest preconditions,
and hence any hypothesis in H is a disjunction of preconditions in Ĥ. The preceding is true
since the logic is closed under Boolean operations. Let ≡ be an equivalence relation on the
set of input states that relate any two input states not distinguishable by the formulas in H
(equivalently by Ĥ). Then we know that the conflict resolver would ensure that feature vectors
in each equivalence class are pure—that there are no positive and negative vectors in the
same class. Consequently, the disjunction of the formulas corresponding to the equivalence
classes containing the positive samples is consistent with the samples, and is in H. This
concludes the proof. Q.E.D.

5.2.4 Construction of a Testing-Based Teacher

In this section, we describe our techniques for adapting a test generator to a testing-based
teacher (TBT) that actively tries to find counterexamples to safety and maximality of given
preconditions. We also describe how the featurizer can be implemented.

110



5.2.4.1 Extracting Counterexamples

The first issue is to adapt the test generator to return negative counterexample inputs for
showing that a precondition is not safe and positive counterexample inputs for showing that
a precondition is potentially not maximal. A test generator’s goal is slightly different than a
TBT’s (see Definition 5.1). Given a method, m(~p), and a precondition, ϕ, the goal of a test
generator is to find samples of the form (s, v) allowed by ϕ, and to generate valid and invalid
input states, typically trying to find invalid ones.

Extracting negative counterexamples is easy—we keep the same precondition (the precon-
dition needs to be evaluated by calling the various observer methods) and we ask the test
generator to find inputs that cause exceptions. Valid and invalid inputs found by the test
generator can be returned.
To extract positive counterexamples, we instrument the method as follows:
• replace the precondition ϕ with its negation ¬ϕ,

• for every assert statement, we insert an assume statement for the same condition right
before the assert statement,

• add an assert(false) statement at the end of the method, and before every return

statement (if any).
The valid/invalid inputs found by the test generator for the instrumented method are returned
(as valid/invalid inputs to the original method).

5.2.4.2 Implementing the Featurizer

To form feature vectors from inputs generated by the test generator, we insert additional
statements at the beginning of the method for computing the features. The features are
computed by calling the various observer methods and storing their return values in variables
of appropriate type.
Although in theory we assume that observer methods are pure, this assumption may not

always be true in practice. In our evaluation, we manually ensure that the chosen observer
methods are pure.

5.2.5 Evaluation

We prototype an implementation of our framework, called the Proviso tool, for synthe-
sizing preconditions for C# programs. We adapt an industrial test generator, Pex [76],

111



Project / Classes #Classes #LOC

.NET Data structures:
46 14886Stack, Queue, Set, Map, ArrayList

QuickGraph:
319 34196Undirected Graph, Binary Heap

Lidregen Network:
59 14042NetOutGoingMessage, BigInteger

DSA: Numbers 60 5155

Hola Benchmarks 1 933

Code Contract Benchmarks 1 269

Table 5.1: Statistics of evaluation subjects

to a testing-based teacher, choose the logic LB,Z, over Booleans and integers (introduced
in Section 5.2.3.2), and a variant of Quinlan’s C 5.0 decision tree algorithm [59, 75] to an
exact learner [46]. The conflict resolver is the one for LB,Z described in Section 5.2.3.2. We
instantiate the framework for two tasks of specification inference: learning preconditions
for preventing runtime failures and learning conditions for method commutativity in data
structures. The Proviso tool terminates only when it finds an ideal precondition modulo
the test generator.

In our evaluation, we intend to address the following main research question:
How effectively can the Proviso tool learn truly ideal preconditions?

The purpose of this research question is to investigate how effective our framework is in
learning preconditions that are truly ideal—truly safe and truly maximal. In Section 5.2.3,
we show that our learning algorithm when it terminates will converge on a safe and maximal
precondition, with respect to the test generator. However, it may be the case that the learned
precondition is neither safe nor maximal when compared to the ground truth (as determined
by a programmer examining the code). This situation can happen for multiple reasons:
ineffectiveness of the test generator to generate counterexamples, lack of observer methods
to capture sufficient detail of objects, and inexpressiveness of the logic to express the right
preconditions. To answer this research question, we manually inspect all of the cases and
derive ground truths to the best of our abilities and compare them with the preconditions
synthesized by Proviso.
Evaluation setup. We evaluate our framework on a combination of small and large
projects studied in previous work related to precondition inference [133, 159, 160] and test

112



generation [161, 162]. We consider classes with methods from these projects whose parameters
are of primitive types currently supported by our learner (i.e., int, bool) or whose parameters
are of complex types that have observer methods (defined in their interface) whose return
types are int or bool. For the task of learning preconditions for preventing runtime failures,
our evaluation subjects include (1) two open source projects, Lidregen Network and Data
Structures and Algorithms (DSA), and (2) a set of Code Contract benchmarks from the
cccheck static analyzer [163] and benchmarks from the Hola engine [120]. For the task of
learning conditions for method commutativity in data structures, our evaluation subjects
include data structures available in two open source projects, QuickGraph and .NET Core.
Table 5.1 shows the data structures/classes used as our evaluation subjects. The table also
shows the number of classes and the size of code for the entire project (the individual methods
that we consider in our evaluation are smaller, but they can call various other methods and
our test generator does analyze the larger code base).
In total, our evaluation subjects include 105 method pairs for learning commutativity

conditions and 121 methods for learning conditions to prevent runtime failures.
For each data structure and non-primitive type, we implement abstract equality methods

and factory methods. The equality methods compare object states for equivalence, and the
factory methods (which Pex exploits) create objects from primitive types. For each method
or method pair, we use all and only the public observer methods in the interface of their
respective class.

Table 5.2 summarizes our evaluation results, including statistics on our subjects, statistics
on learning, and details on validation with respect to Randoop [164] (a test generator) and
ground truth.

5.2.5.1 Learning Ideal Preconditions

We assess the effectiveness of our framework in two main aspects: one being quality of the
learned preconditions while the other being the efficiency of precondition learning.
Quality of learned preconditions. We examine in two ways whether the learned pre-
conditions are indeed truly ideal. First, we use another test generator compatible with C#
programs, namely Randoop [164], to check whether a precondition is safe. If Randoop can
generate an invalid input allowed by the learned precondition, then it is clear that the learned
precondition is not truly safe (despite the fact that Pex did not find such input). After this
first step, we manually inspect each case where Randoop cannot generate inputs to show
unsafety, deriving the truly ideal precondition manually and checking whether it is equivalent
to the learned precondition.

113



Subjects Learning Framework Validation
Randoop Manual

Project/Class LOC Met. Obs. #CE #Rnd. Size Time(s) #Test #Fail #Safe #Corr.
Commutativity

Stack 502 10 3 7.9 4.9 1.0 418.2 10117 0 10 8
Set 1847 10 2 11.3 2.5 2.1 493.3 10922 0 10 10
Queue 584 10 3 21.9 10.3 1.0 1646.5 10020 0 10 8
Map 1382 10 3 30.5 5.1 2.7 1230.1 8809 13 9 9
ArrayList 2963 10 4 12.0 4.7 2.6 1212.0 9072 75 9 9
Undirected Graph 327 36 7 13.7 7.0 2.7 1045.2 5708 104 30 16
Binary Heap 335 19 4 42.2 4.6 6.2 872.2 7456 25 17 17

Exceptions
NetOutGoingMessage 785 47 3 9.5 2.8 1.7 515.0 1067 70 44 42
BigInteger 2334 39 2 13.6 3.7 2.6 214.5 2214 178 38 34
Numbers 284 4 0 20.3 60.5 1.8 4589.2 3626 0 4 2
CodeContract 269 21 0 22.4 16.0 1.6 376.9 14170 0 21 21
Hola 933 10 0 47.5 20.9 2.9 428.7 19236 0 10 7

Table 5.2: Evaluation results on benchmarks and open source programs using Proviso. Abbrevia-
tions: LOC=total number of Lines of Code of the class, Met.=total number of methods/method pairs,
Obs.=total number of observer methods, #CE=average number of counterexamples, #Rnd.=average
number of rounds, Size=average size of the preconditions, time=average time taken per method (in
seconds), #Test=total number of tests generated by Randoop, #Fail=total number of failing tests
found by Randoop, #Safe=number of methods/method pairs whose preconditions are found safe by
Randoop, #Corr.= number of methods/method pairs found by manual inspection to be truly safe
and maximal.

Our results shown in Table 5.2 suggest that learning modulo a test generator can be
effective in learning truly safe and maximal preconditions, despite the test generator’s
incompleteness.

Out of the 105 commutativity cases, we find that Proviso can learn 73 (∼70%) truly safe
and maximal preconditions. In addition, Proviso learns 24 other preconditions that are only
truly safe. Overall, ∼92% of the preconditions learned by Proviso for the commutativity
cases are truly safe. For the 121 exception-prevention cases, we find that Proviso can learn
105 (∼87%) truly safe and maximal preconditions. Proviso learns additional 4 preconditions
that are only truly safe.
In multiple cases, Proviso does not learn a truly ideal precondition due to lacking

appropriate observer methods. For example, a commutativity precondition synthesized for a
.NET benchmark involves checking whether a setter and getter on a dictionary commute,
and Proviso learns a precondition that is neither truly safe nor truly maximal. However, if
we implement an additional observer method ContainsValueAt(x), which returns the value
at x, then Proviso learns (s1.ContainsValueAt(x) && s1.ContainsKey(y)) || (!(x == y)

&& s1.ContainsKey(y)), which is a truly safe and maximal precondition.

114



Another example is the commutativity of methods peek() and pop() in a stack—they
commute when the top two elements in the stack are identical. However, this property turns
out to be not expressible using the available observer methods and the learned precondition
is false.
In most cases, however, Proviso does learn truly safe and maximal preconditions that

are natural and easy to read. For example, for the commutativity of push(x) and push(y),
Proviso learns the precondition x == y, which is indeed truly safe and maximal.
For learning preconditions to prevent runtime failures, Proviso performs very well.

Proviso performs well also on the larger open source programs in Lidregen Network in terms
of both correctness and time spent in learning. A particular case of interest in DSA is where
Proviso is able to learn a truly ideal precondition [number < 1024] for the toBinary method,
which converts an integer to its binary representation (the constant 1024 is discovered by
Proviso). For values of 1024 or higher, an integer overflow exception occurs deep in .NET
library code.
Efficiency of precondition learning. We also measure the time efficiency of Proviso in
learning preconditions. Proviso takes on average ∼740 seconds per method/method pair to
synthesize preconditions.

5.2.5.2 On Empirical Comparison with Related Work

It is hard to provide a fair comparison with two closely related approaches by Padhi et
al. [133] and Gehr et al. [165]. The approach by Gehr et al., strictly speaking, does not
learn preconditions. It learns conditions under which two methods have commuted after their
execution; the learned conditions are expressed over primitive-type parameters and return
values of these two methods (note that, by definition, preconditions for these two methods
should not be expressed using their return values). In addition, the learned conditions cannot
capture properties of object states.
The approach by Padhi et al. [133] learns preconditions while also synthesizing auxiliary

predicates. In this case, the languages for the programs are different (ours is for C# while
theirs is for OCaml), and a direct tool comparison is hard. However, since our framework
allows any passive learner to be plugged in, we plug in the passive learner used by Padhi
et al. [133, PIE] and re-produce our evaluation results. The results show that when the
feature sets are fixed, Proviso equipped with Padhi et al.’s learner has similar effectiveness
as Proviso (by default equipped with the decision-tree learner), but when features are not
provided, Proviso equipped with Padhi et al.’s learner takes much longer time and even
diverges in some cases.

115



5.3 SYNTHESIZING CONJUNCTIVE POSTCONDITIONS

Synthesizing postconditions can be seen as one form of specification mining, which has
applications in various fields. The precondition and the postcondition of a method forms its
contract, such that if the method is executed in a state that satisfies the precondition, then
it is guaranteed to terminate in a state satisfying the postcondition. While preconditions
are used to define the input state space on which the method would terminate without
throwing an exception or causing an assertion violation, postconditions are used to summarize
the behavior of the method, capturing it as a logical formula. Such summarization using
the contracts is especially useful in verification, as methods can be verified modularly, by
substituting each method call by its contract instead of inlining. Moreover, code snippets for
a variety of tasks are available online on websites like GitHub or StackOverflow. Summarizing
such code snippets by synthesizing their contracts, can allow us to search/autocomplete the
implementation of a method just from its specification.
In this section, we propose a CEGIS based learning framework to synthesize conjunctive

postcondition of methods using a test generator as the oracle. The synthesized postconditions
need to be strong, and ideally the strongest postcondition expressible in a given logic.
We assume that, along with other annotations, the method has been annotated with a
precondition that prevents all exception failure. This can be done using the precondition
synthesis techniques mentioned in earlier sections.

Our framework works as follows: in each round, the learner proposes a new postcondition.
The teacher asserts the postcondition at the end of the method and generates pairs of
input and output states such that the input states satisfy the precondition. Hence, all the
counterexamples in this framework are labeled positively. We next use a SyGuS solver to
synthesize predicates, which are equality expressions that define an output as a function of the
input. Finally, we use the classical elimination algorithm to learn conjunctive postconditions
from the synthesized predicates. The elimination algorithm fits perfectly in this scenario as
it can learn conjunctive concepts from positive counterexamples. The conjunction it learns is
the semantically tightest formula (or the formula with the most predicates), which prevents
our framework from learning trivial postconditions.

5.3.1 Problem Formulization

In this section, we formalize the problem of synthesizing postconditions with the aid of a
test generator.
Recall from Section 5.2.2, that we have a method m(~p) with formal input parameters ~p,

116



where ~p consists of primitive type input parameters and objects of classes. Let us assume the
class the method m is a member of and classes of the objects in the input parameters, have a
set of pure (i.e., side-effect free) observer methods that return primitive types. These observer
methods query the properties of the state of the objects. Let us also assume that, along with
other annotations, the method has been annotated with the precondition synthesized using
the techniques mentioned earlier sections.
We formalize the test generator as a deterministic function that given a method returns

pairs of feasible input-output states. Each input state consists of the values of the input
parameters at the beginning of the method. Note that the input states satisfy the precondition.
The output states consist of the valuation of all the variables and objects at the end of the
method. The output states also include the updated valuations of the input parameters and
the value of a special variable ret containing the return values of the method.
We define feature vectors as an abstraction of the input states or the output states. The

abstraction replaces an object by the values of its observer methods while keeping all the
primitive type values unchanged. Hence, the feature vectors only contain primitive type
values (integer and Boolean in our tool). Let us call the feature vector constructed from an
input state as fvin, and fvout for the output state. Let us call the variables corresponding to
the features in the feature vector fvin as varsin, and varsout for the feature vector fvout. Let
vars be the union of varsin and varsout.
The counterexamples in this framework are the abstractions of pairs of input and output

states. In other words, a counterexample is a concatenation of the feature vectors fvin and
fvout. A counterexample is labeled negative if the corresponding input and output states do
not cause an exception or an assertion failure. However, as the precondition prohibits the
test generator from creating such a pair of input and output states, all the counterexamples
in this framework are labeled positive.

In this framework, we aim to synthesize a conjunctive postcondition ϕ, which is a quantifier-
free first-order logic formula over the free variables in vars. Additionally, each atomic predicate
in this formula ϕ can contain equality, and if-then-else(ite) expressions along with the usual
functions, relations, and constants in the underlying logic.
We can now state the problem statement:

Problem Statement 5.2. Given a method m(~p) with input parameters ~p, an ideal precon-
dition for this method, a logic L for expressing postconditions, and a test generator, find the
strongest postcondition for m(~p) expressible in the given logic L.

117



5.3.2 Learning Framework for Synthesizing Postconditions

We now describe the general learning framework to synthesize postconditions for methods.
Our framework has the following components: (1) a test generator that given a hypothesis
postcondition, generates pairs of input and output states such that the input states satisfy the
precondition, (2) a featurizer that abstracts these input states into feature vectors and hence,
generates the counterexamples, (3) a predicate synthesizer, and (4) a learner for conjunctive
Boolean formulas that learns from positive examples. The framework maintains a global
set CE of counterexamples to accumulate them across rounds. In every round, the learner
proposes a postcondition consistent with the set of counterexamples CE. The test generator
then returns pairs of input and output states, which are abstracted into counterexamples
by the featurizer and added to the set CE. We next invoke the predicate synthesizer to
synthesize predicates on the variables in vars. The conjunctive learner, which consists of
the elimination algorithm, is invoked next, thus proposing a new hypothesis postcondition
for the next round, and the loop continues. We declare a proposed postcondition ϕ as the
solution if the test generator cannot find any new counterexamples.

5.3.2.1 Synthesizing Predicates

We next synthesize a set of predicates on the variables in vars. We synthesize two classes of
template-based predicates. For the first class, we enumerate all possible octagonal constraints
on the variables in vars. Let us call this set of predicates Poct. Here each predicate consists
of two variables and a constant, all of whose magnitude range from +1 to −1. Formally,

Poct = {s1v1 + s2v2 ≤ c, s1, s2, c ∈ {1, 0,−1}, v1, v2 ∈ vars, v1 6= v2} (5.2)

We synthesize the second class of predicates using external synthesis engines. Often in
our experiments, we found that equality predicates, which define an output as a function of
the input, describe the intended behavior of the program in a better way, and hence result
in stronger postconditions. For example, in the method pop of the class stack, adding the
predicate sizeout = ite(sizein > 0, sizein−1, sizein), where ite denotes if-then-else expressions,
sizein and sizeout denote the value of the variable size in the input state and the output
state, respectively. This predicate captures the functional behavior of the method more
accurately.
Hence, for every variable v ∈ varsout, we call a SyGuS solver to synthesize a function fn

on all the variables in varsin, such that v = fn(varsin) holds. If the SyGuS solver is able
to synthesize such a function, we add this expression as an equality predicate; else, we skip
this predicate. We call this set of predicates Peq. Note that the variable denoting the return

118



value of the method ret is also included in the set of variables varsout.
The SyGuS solvers allow us also to specify a grammar to restrict the search space and

also to control the syntax of the synthesized function. In our tool, we specified the syntax of
the functions to be a tree of height at most 1. The leaf nodes are a linear combination of
the variables with coefficients and constants from a bounded range. We start the synthesis
process with a small bound ([-1,1] in our tool), and increase it for every subsequent round of
the framework. The conditional nodes consist of comparisons between the variables.
The call to the SyGuS solver will always terminate. This is because, as the number of

variables is finite, and coefficients and constants of the linear expression are from a bounded
range, the search space of candidate functions is also finite. Also, if the solution requires a
linear expression with higher coefficients (or constants), then the SyGuS solver will eventually
find it in subsequent rounds as the bounds are increased.

5.3.2.2 Learning Conjunctive Boolean Formulas

Once we have synthesized the predicates and created the set P , we then evaluate them
on all the counterexamples accumulated across rounds in the set CE, resulting in a set
containing vectors of Boolean values, which constitutes our sample for learning. Formally if
P = {p1, p2, . . . , pn}, and each counterexample c ∈ CE is of the form (c1, c2, . . . , cm) (note
that |vars| = m), then the sample S = ⋃

c∈CE{(p1(c), p2(c), . . . , pn(c))}, where pi(c) evaluates
the predicate pi on the counterexample c. Note that the predicates have as free variables the
variables from the set vars, and the counterexamples are concrete valuations of the variables
in vars. Thus, each such evaluation results in a Boolean value.
Due to the nature of our problem where we have only positive counterexamples, and we

want to learn the tightest conjunction on a set of Boolean variables, the classical elimination
algorithm poses an excellent fit. The elimination algorithm learns the largest conjunctive
formula in terms of the number of predicates in the final conjunct. This also implies that the
formula is semantically the tightest. Learning the tightest functional concept is useful in our
scenario, as any superset of the tightest set is also a solution and contains less information than
the tightest set, with true being the most trivial postcondition. The elimination algorithm
guarantees convergence in at most |P | rounds, which performs extremely well in practice.

Elimination Algorithm: Let us now describe the elimination algorithm. Given a sample
S, the elimination algorithm first assigns P , the set containing all the predicates, to a
temporary variable X. The algorithm then proceeds as follows:

119



Datastructure Met. Obs. #CE #Rnd. Size Teacher
Time(s)

Learner
Time(s)

Total
Time(s)

Stack 5 3 10.0 3.0 2.8 107.9 5.2 113.1
Queue 5 3 15.0 3.0 3.2 67.8 2.9 70.7
Hash Set 4 2 14.3 2.3 2.0 268.3 1.8 270.1
Dictionary 7 3 17.3 2.6 3.1 284.9 2.9 287.8
Array List 9 4 13.7 3.0 7.2 67.0 5.9 72.9
Binary Heap 7 4 37.7 3.0 6.3 205.2 14.5 219.7
Undirected Graph 4 7 20.5 3.0 7.3 369.5 8.2 377.7

Table 5.3: Evaluation results on benchmarks from open source projects using Precis. Abbreviations:
Met.=total number of methods, Obs.=total number of observer methods, #CE=average number
of counterexamples, #Rnd.=average number of rounds, Size=average number of conjuncts in the
postconditions, Teacher(Learner) time= average time taken by teacher(learner) per method (in
seconds), Total time=average time taken per method (in seconds).

1. It removes all predicates p ∈ X from X that violates one of the counterexamples, i.e.,
the predicate p evaluates to false when evaluated on a counterexample c ∈ S.

2. Continue step 1 until a fixed point is reached. Once this happens, X is the unique
largest set of predicates that is consistent with the sample S. The final postcondition
is the conjunction of all the predicates in X. If the set X of predicates becomes empty,
no conjunctive formula exists that is consistent with the sample, and true is returned
as the postcondition.

It is not hard to verify that the time the elimination algorithm spends in each round is
polynomial in the number of predicates in P , and the number of counterexamples in the
sample S (provided predicates can be evaluated in constant time).

5.3.3 Evaluation

We implemented a prototype of our framework, in a tool called Precis, to synthesize
conjunctive postconditions of C# programs. Precis uses an industrial test generator
PEX [76] over the logic of Booleans and integers. We implemented the elimination algorithm
in Python. To synthesize the functional components of the equality predicates, we used
the enumerative solver [65] from the SyGuS competitions [1]. We specified a grammar to
synthesize base expressions or if-then-else(ite) expressions with base expressions as its leaves.
The base expressions are linear integer arithmetic expressions on the variables with bounded
coefficients, while the conditionals of the ite expressions consist of simple comparisons between

120



the variables. We also implemented a module to simplify linear integer arithmetic formulas,
using the various tactics provided by the Z3 [88] SMT solver.
We evaluated our framework on datastructure methods from two open-source projects

QuickGraph and the .NET Core. Table 5.1 summarizes the datastructure classes used
from these projects. In our evaluation, we used 41 methods from these classes. For every
method, we first synthesized their preconditions using our tool Provisio and then added
the preconditions as assume statements at the beginning of the methods. For each of the
classes, we only used public observer methods in their interface.
All experiments were performed on a system with an Intel Core i7 quad-core CPU with

1.8GHz frequency, and 8GB RAM, running 64-bit Windows 10 OS. Table 5.3 summarises
our evaluation results. Precis was able to synthesize postconditions of reasonable size, very
efficiently taking an average of ∼ 200s per method. The majority of the time was spent by
PEX to generate counterexamples, while the learning phase took comparatively negligible
time. The postconditions synthesized by Precis were of reasonable length (average of 4.6
conjuncts), and it took on average three rounds per method. We also manually verified all
the postconditions to verify their validity.

5.4 RELATED WORK

Black-box approaches. Ernst et al. [166] proposed Daikon for dynamically detecting
conjunctive Boolean formulas as likely invariants from black-box executions that gather
runtime state information (method-entry states, method-exit states); Daikon, seen as a
learning algorithm, learns using only positive counterexamples, and unlike our approach,
does not make any guarantees of safety or maximality.

Our work is most closely related to three black-box approaches by Padhi et al. [133], Gehr
et al. [165], and Sankaranarayanan et al. [167]. The last two approaches [165, 167] rely
on generating test inputs from sampling feasible truth assignment of input predicates or
assignments satisfying representative formulas in a particular logic, followed by Boolean
learning from positive and negative examples to infer preconditions. However, these ap-
proaches do not provide any guarantees unlike our work, where we guarantee that the final
learned precondition is both safe and maximal with respect to a testing-based teacher. Padhi
et al. [133] proposed a data-driven learning approach based on feature learning, including
black-box and white-box components. Its black-box component, PIE, learns a formula from
a fixed set of tests. Its white-box component, VPreGen, includes an iterative refinement algo-
rithm that uses counterexamples returned by a verifier to learn provably safe preconditions.
However, the white-box component does not make any guarantees on maximality as we do.

121



Furthermore, to assure that preconditions are provably safe, inductive loop invariants must
be synthesized, further complicating the problem. In our approach, we replace the verifier
with a testing-based teacher for practical reasons and handle the accompanying challenges.
Program and expression synthesis. The field of program synthesis deals with the
problem of synthesizing expressions that satisfy a specification.

One of the most promising approaches of synthesizing expressions is counterexample-guided
inductive synthesis (CEGIS) [1], which in fact resembles online learning. In this setting, the
target expression is learned in multiple rounds of interaction between a learner and a verifier.
In each round, the learner proposes a candidate expression and the verifier checks whether the
expression satisfies the specification, and returns counterexamples otherwise. In this sense,
we can view our algorithm also as a CEGIS algorithm, but where the verifier is replaced by
an incomplete testing-based tool. However, there are technical differences — in program
synthesis, the aim would be to find a formula that precisely classifies the examples, while in
our setting, we are required to learn a classifier that classifies negative examples precisely, but
is allowed to negatively classify positive examples. Furthermore, we require that a minimal
number of positive counterexamples are classified negatively; such maximality constraints are
not the norm in program synthesis (indeed some problems involving maximality have been
recently considered [168]).
Decision-tree learning. Decision-tree learning has been used in several contexts in pro-
gram synthesis before — in precondition synthesis [167], in invariant synthesis [46, 126], in
synthesizing piece-wise linear functions [157], etc. Many of these algorithms have had to
change the ID3 algorithm, similar to our work, so that the algorithm learns a tree consistent
with the samples. The crucial differences in our framework from such previous work are
that we dynamically modify the classifications of samples from positive to negative when we
discover conflicting counterexamples, and ensure maximality of preconditions by learning
across rounds using inputs from the testing-based teacher.

5.5 CONCLUSIONS AND FUTURE WORK

In this chapter, we have presented a novel formalization for the inference problem of stateful
preconditions modulo a test generator. In this formalization, the quality of the precondition
is based on its safety and maximality with respect to the test generator. We have further
proposed a novel iterative active learning framework for synthesizing stateful preconditions,
and a convergence result for finite hypothesis spaces.
To assess the effectiveness of our framework, we have instantiated our framework for two

tasks of inference and evaluated our framework on various C# classes from well-known

122



benchmarks and open source projects. The results demonstrate the effectiveness of the
proposed framework.
We also proposed a learning framework to synthesize conjunctive postconditions using

a test generator as the oracle. We used SyGuS solvers to synthesize the predicates and
used the elimination algorithm to synthesize the postcondition. We implemented the tool
Precis, which performed effectively on many datastructure benchmarks. One important
future research direction is to extend this work for disjunctive concepts, hence learning all
Boolean formulas.

123



REFERENCES

[1] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Mad-
husudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,” in Dependable Software
Systems Engineering, ser. NATO Science for Peace and Security Series, D: Information
and Communication Security. IOS Press, 2015, vol. 40, pp. 1–25.

[2] A. Solar Lezama, “Program synthesis by sketching,” Ph.D. dissertation, EECS Depart-
ment, University of California, Berkeley, 2008.

[3] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combinatorial
sketching for finite programs,” ACM Sigplan Notices, vol. 41, no. 11, pp. 404–415, 2006.

[4] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid, and
B. Zorn, “Inductive programming meets the real world,” Commun. ACM, vol. 58,
no. 11, pp. 90–99, Oct. 2015.

[5] S. Gulwani, O. Polozov, R. Singh et al., “Program synthesis,” Foundations and Trends R©
in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.

[6] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-free programs,”
in PLDI, vol. 11, 2011, pp. 62–73.

[7] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation using exam-
ples,” Communications of the ACM, vol. 55, no. 8, pp. 97–105, 2012.

[8] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based program synthesis,”
Communications of the ACM, vol. 61, no. 12, pp. 84–93, 2018.

[9] S. Gulwani, “Automating string processing in spreadsheets using input-output example,”
in ACM Sigplan Notices, vol. 46, no. 1. ACM, 2011, pp. 317–330.

[10] V. Le and S. Gulwani, “Flashextract: a framework for data extraction by examples,”
in ACM SIGPLAN Notices. ACM, 2014, pp. 542–553.

[11] R. Singh and S. Gulwani, “Transforming spreadsheet data types using examples,” in
Acm Sigplan Notices, vol. 51, no. 1. ACM, 2016, pp. 343–356.

[12] R. Singh and S. Gulwani, “Synthesizing number transformations from input-output
examples,” in International Conference on Computer Aided Verification. Springer,
2012, pp. 634–651.

[13] R. Singh and S. Gulwani, “Learning semantic string transformations from examples,”
Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 740–751, 2012.

[14] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from examples,” in
ACM SIGPLAN Notices, vol. 46, no. 6. ACM, 2011, pp. 317–328.

124



[15] S. Gulwani, M. Mayer, F. Niksic, and R. Piskac, “Strisynth: synthesis for live pro-
gramming,” in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 701–704.

[16] S. Karaivanov, V. Raychev, and M. Vechev, “Phrase-based statistical translation of
programming languages,” in Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software. ACM,
2014, pp. 173–184.

[17] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, and A. C. Myers, “Using program
analysis to improve database applications.” IEEE Data Eng. Bull., vol. 37, no. 1, pp.
48–59, 2014.

[18] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan, “Automated grading
of dfa constructions,” in Twenty-Third International Joint Conference on Artificial
Intelligence, 2013.

[19] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation for
introductory programming assignments,” Acm Sigplan Notices, vol. 48, no. 6, pp. 15–26,
2013.

[20] S. Gulwani, “Example-based learning in computer-aided stem education.” Commun.
ACM, vol. 57, no. 8, pp. 70–80, 2014.

[21] S. Gulwani, V. A. Korthikanti, and A. Tiwari, “Synthesizing geometry constructions,”
in ACM SIGPLAN Notices, vol. 46, no. 6. ACM, 2011, pp. 50–61.

[22] G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia, “Cpsgrader: Synthesizing
temporal logic testers for auto-grading an embedded systems laboratory,” in 2014
International Conference on Embedded Software (EMSOFT). IEEE, 2014, pp. 1–10.

[23] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with quantitative
objectives,” in International Conference on Computer Aided Verification. Springer,
2016, pp. 383–401.

[24] S. Saha, S. Prabhu, and P. Madhusudan, “Netgen: synthesizing data-plane configura-
tions for network policies,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM, 2015, p. 17.

[25] J. McClurg, H. Hojjat, P. Černỳ, and N. Foster, “Efficient synthesis of network updates,”
in Acm Sigplan Notices, vol. 50, no. 6. ACM, 2015, pp. 196–207.

[26] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic program optimization,” Communi-
cations of the ACM, vol. 59, no. 2, pp. 114–122, 2016.

[27] H. Massalin, “Superoptimizer: a look at the smallest program,” in ACM SIGARCH
Computer Architecture News. IEEE Computer Society Press, 1987, pp. 122–126.

125



[28] S. Bansal and A. Aiken, “Binary translation using peephole translation rules,” May 4
2010, uS Patent 7,712,092.

[29] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati, “Scaling up superop-
timization,” in ACM SIGARCH Computer Architecture News, vol. 44, no. 2. ACM,
2016, pp. 297–310.

[30] P. Černỳ, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh, “Quantitative
synthesis for concurrent programs,” in International Conference on Computer Aided
Verification. Springer, 2011, pp. 243–259.

[31] M. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of synchronization,”
in POPL, vol. 10, 2010, pp. 327–338.

[32] M. Kuperstein, M. Vechev, and E. Yahav, “Automatic inference of memory fences,”
ACM SIGACT News, vol. 43, no. 2, pp. 108–123, 2012.

[33] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-and semantic-
guided repair synthesis via programming by examples,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017, pp. 593–604.

[34] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch
synthesis via symbolic analysis,” in Proceedings of the 38th international conference on
software engineering. ACM, 2016, pp. 691–701.

[35] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a game,” in Interna-
tional conference on computer aided verification. Springer, 2005, pp. 226–238.

[36] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program repair
via semantic analysis,” in 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 772–781.

[37] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language
models,” in Acm Sigplan Notices. ACM, 2014, pp. 419–428.

[38] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program synthesis from polymorphic
refinement types,” in ACM SIGPLAN Notices. ACM, 2016, pp. 522–538.

[39] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac, “Complete completion using types and
weights,” in ACM SIGPLAN Notices, vol. 48, no. 6. ACM, 2013, pp. 27–38.

[40] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu, “Bing developer
assistant: improving developer productivity by recommending sample code,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2016, pp. 956–961.

[41] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-directed completion of
partial expressions,” in ACM Sigplan Notices, vol. 47, no. 6. ACM, 2012, pp. 275–286.

126



[42] A. Muscholl and I. Walukiewicz, “Distributed synthesis for acyclic architectures,” arXiv
preprint arXiv:1402.3314, 2014.

[43] P. Madhusudan and P. S. Thiagarajan, “Distributed controller synthesis for local
specifications,” in International Colloquium on Automata, Languages, and Programming.
Springer, 2001, pp. 396–407.

[44] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy, “Efficient synthesis of
probabilistic programs,” in ACM SIGPLAN Notices, vol. 50, no. 6. ACM, 2015, pp.
208–217.

[45] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust framework for
learning invariants,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 69–87.

[46] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants using decision
trees and implication counterexamples,” in ACM Sigplan Notices, vol. 51, no. 1. ACM,
2016, pp. 499–512.

[47] R. Sharma and A. Aiken, “From invariant checking to invariant inference using ran-
domized search,” Formal Methods in System Design, vol. 48, no. 3, pp. 235–256,
2016.

[48] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties from big code,”
in ACM SIGPLAN Notices. ACM, 2015, pp. 111–124.

[49] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based program synthesis,”
Commun. ACM, vol. 61, no. 12, pp. 84–93, Nov. 2018.

[50] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,” in 2013 Formal
Methods in Computer-Aided Design. IEEE, 2013, pp. 1–8.

[51] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Results and analysis of sygus-
comp’15,” arXiv preprint arXiv:1602.01170, 2016.

[52] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library
(SMT-LIB),” www.SMT-LIB.org, 2016.

[53] Z. Manna and R. Waldinger, “A deductive approach to program synthesis,” in Readings
in artificial intelligence and software engineering. Elsevier, 1986, pp. 3–34.

[54] Z. Manna and R. J. Waldinger, “Towards automatic program synthesis,” in Symposium
on Semantics of algorithmic Languages. Springer, 1971, pp. 270–310.

[55] M. Parthasarathy, U. Mathur, S. Saha, and M. Viswanathan, “A decidable fragment of
second order logic with applications to synthesis,” in 27th Annual EACSL Conference
Computer Science Logic, CSL 2018. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, 2018, p. 31.

127



[56] E. M. Gold, “Language identification in the limit,” Information and control, vol. 10,
no. 5, pp. 447–474, 1967.

[57] P. D. Summers, “A methodology for lisp program construction from examples,” Journal
of the ACM (JACM), vol. 24, no. 1, pp. 161–175, 1977.

[58] D. Shaw, W. Wartout, and C. Green, “Inferring lisp programs from examples.” in
IJCAI, vol. 75, 1975, pp. 260–267.

[59] T. M. Mitchell, Machine learning, ser. McGraw Hill series in computer science. McGraw-
Hill, 1997.

[60] E. Kitzelmann, “Inductive programming: A survey of program synthesis techniques,”
in International workshop on approaches and applications of inductive programming.
Springer, 2009, pp. 50–73.

[61] D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,” ACM
Computing Surveys (CSUR), vol. 15, no. 3, pp. 237–269, 1983.

[62] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the 12th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming,
ser. PPDP ’10. ACM, 2010, pp. 13–24.

[63] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-based
program synthesis,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. ACM, 2010, pp. 215–224.

[64] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Sygus-comp 2016: results and
analysis,” arXiv preprint arXiv:1611.07627, 2016.

[65] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program synthesis
via divide and conquer,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2017, pp. 319–336.

[66] T. Akiba, K. Imajo, H. Iwami, Y. Iwata, T. Kataoka, N. Takahashi, M. Moskal, and
N. Swamy, “Calibrating research in program synthesis using 72,000 hours of programmer
time,” MSR, Redmond, WA, USA, Tech. Rep, 2013.

[67] S. Krishna, C. Puhrsch, and T. Wies, “Learning invariants using decision trees,” arXiv
preprint arXiv:1501.04725, 2015.

[68] E. Pek, X. Qiu, and P. Madhusudan, “Natural proofs for data structure manipulation
in c using separation logic,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM, 2014,
pp. 440–451.

[69] X. Qiu, P. Garg, A. Ştefănescu, and P. Madhusudan, “Natural proofs for structure,
data, and separation,” in ACM SIGPLAN Notices, vol. 48, no. 6. ACM, 2013, pp.
231–242.

128



[70] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for esc/java,” in
International Symposium of Formal Methods Europe. Springer, 2001, pp. 500–517.

[71] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie: A
modular reusable verifier for object-oriented programs,” in International Symposium
on Formal Methods for Components and Objects. Springer, 2005, pp. 364–387.

[72] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “Gpuverify: a verifier
for gpu kernels,” in ACM SIGPLAN Notices, vol. 47, no. 10. ACM, 2012, pp. 113–132.

[73] N. Chong, A. F. Donaldson, P. H. Kelly, J. Ketema, and S. Qadeer, “Barrier invariants:
a shared state abstraction for the analysis of data-dependent gpu kernels,” in ACM
SIGPLAN Notices, vol. 48, no. 10. ACM, 2013, pp. 605–622.

[74] D. Neider, P. Garg, P. Madhusudan, S. Saha, and D. Park, “Invariant synthesis for
incomplete verification engines,” in International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2018, pp. 232–250.

[75] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–106,
1986.

[76] N. Tillmann and J. De Halleux, “Pex–white box test generation for. net,” in Interna-
tional conference on tests and proofs. Springer, 2008, pp. 134–153.

[77] C. Smith, G. Ferns, and A. Albarghouthi, “Discovering relational specifications,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
ACM, 2017, pp. 616–626.

[78] M. J. Kearns, U. V. Vazirani, and U. Vazirani, An introduction to computational
learning theory. MIT press, 1994.

[79] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[80] R. Jin and Z. Ghahramani, “Learning with multiple labels,” in Advances in neural
information processing systems, 2003, pp. 921–928.

[81] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer
series in statistics New York, 2001, vol. 1, no. 10.

[82] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” International
Journal of Data Warehousing and Mining (IJDWM), vol. 3, no. 3, pp. 1–13, 2007.

[83] A. Clare and R. D. King, “Knowledge discovery in multi-label phenotype data,” in
European Conference on Principles of Data Mining and Knowledge Discovery. Springer,
2001, pp. 42–53.

[84] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of operations
research, vol. 4, no. 3, pp. 233–235, 1979.

129



[85] S. Saha, P. Garg, and P. Madhusudan, “Alchemist: Learning guarded affine functions,”
in International Conference on Computer Aided Verification. Springer, 2015, pp.
440–446.

[86] E. W. Weisstein, “Coplanar,” 2002.

[87] M. Raghothaman and A. Udupa, “Language to specify syntax-guided synthesis prob-
lems,” arXiv preprint arXiv:1405.5590, 2014.

[88] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2008,
pp. 337–340.

[89] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. Barrett, “Counterexample-
guided quantifier instantiation for synthesis in smt,” in International Conference on
Computer Aided Verification. Springer, 2015, pp. 198–216.

[90] C. Barrett, A. Stump, and C. Tinelli, “The smt-lib standard: Version 2.0,” in Proceedings
of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK),
2010.

[91] A. Solar-Lezama, “Program sketching,” International Journal on Software Tools for
Technology Transfer, vol. 15, no. 5, pp. 475–495, Oct 2013.

[92] R. Alur and N. Singhania, “Precise piecewise affine models from input-output data,” in
Proceedings of the 14th International Conference on Embedded Software. ACM, 2014,
p. 3.

[93] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error approach
to piecewise affine system identification,” IEEE Transactions on Automatic Control,
vol. 50, no. 10, pp. 1567–1580, 2005.

[94] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering technique for
the identification of piecewise affine systems,” Automatica, vol. 39, no. 2, pp. 205–217,
2003.

[95] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraic geometric approach to
the identification of a class of linear hybrid systems,” in 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 1. IEEE, 2003,
pp. 167–172.

[96] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification of hybrid
systems a tutorial,” European journal of control, vol. 13, no. 2-3, pp. 242–260, 2007.

[97] C. Löding, P. Madhusudan, and D. Neider, “Abstract learning frameworks for synthesis,”
in International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2016, pp. 167–185.

130



[98] R. W. Floyd, “Assigning meanings to programs,” in Program Verification. Springer,
1993, pp. 65–81.

[99] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of
the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[100] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies, “Vcc: A practical system for verifying concurrent c,”
in International Conference on Theorem Proving in Higher Order Logics. Springer,
2009, pp. 23–42.

[101] K. R. M. Leino, “Dafny: An automatic program verifier for functional correctness,” in
International Conference on Logic for Programming Artificial Intelligence and Reasoning.
Springer, 2010, pp. 348–370.

[102] L. De Moura and N. Bjørner, “Efficient e-matching for smt solvers,” in International
Conference on Automated Deduction. Springer, 2007, pp. 183–198.

[103] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover for program checking,”
Journal of the ACM (JACM), vol. 52, no. 3, pp. 365–473, 2005.

[104] Y. Ge and L. De Moura, “Complete instantiation for quantified formulas in satisfia-
biliby modulo theories,” in International Conference on Computer Aided Verification.
Springer, 2009, pp. 306–320.

[105] C. Löding, P. Madhusudan, and L. Pe
textasciitilde na, “Foundations for natural proofs and quantifier instantiation,” Pro-
ceedings of the ACM on Programming Languages, vol. 2, no. POPL, p. 10, 2017.

[106] D.-H. Chu, J. Jaffar, and M.-T. Trinh, “Automatic induction proofs of data-structures
in imperative programs,” in ACM SIGPLAN Notices, vol. 50, no. 6. ACM, 2015, pp.
457–466.

[107] K. L. McMillan, “Interpolation and sat-based model checking,” in International Con-
ference on Computer Aided Verification. Springer, 2003, pp. 1–13.

[108] A. R. Bradley, “Sat-based model checking without unrolling,” in International Workshop
on Verification, Model Checking, and Abstract Interpretation. Springer, 2011, pp.
70–87.

[109] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property directed
reachability,” in Proceedings of the International Conference on Formal Methods in
Computer-Aided Design. FMCAD Inc, 2011, pp. 125–134.

[110] V. Klebanov, P. Müller, N. Shankar, G. T. Leavens, V. Wüstholz, E. Alkassar, R. Arthan,
D. Bronish, R. Chapman, E. Cohen et al., “The 1st verified software competition:
Experience report,” in International Symposium on Formal Methods. Springer, 2011,
pp. 154–168.

131



[111] D. Neider, P. Garg, P. Madhusudan, S. Saha, and D. Park, “Prototype and
benchmarks for “invariant synthesis for incomplete verification engines”,” 2 2018.
[Online]. Available: https://doi.org/10.6084/m9.figshare.5928094

[112] R. Piskac, T. Wies, and D. Zufferey, “Automating separation logic using smt,” in
International Conference on Computer Aided Verification. Springer, 2013, pp. 773–
789.

[113] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M. Sagiv, “Effectively-
propositional reasoning about reachability in linked data structures,” in International
Conference on Computer Aided Verification. Springer, 2013, pp. 756–772.

[114] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying security invariants
in expressos,” in ACM SIGARCH Computer Architecture News, vol. 41, no. 1. ACM,
2013, pp. 293–304.

[115] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. Setty,
and B. Zill, “Ironfleet: proving practical distributed systems correct,” in Proceedings of
the 25th Symposium on Operating Systems Principles. ACM, 2015, pp. 1–17.

[116] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks,” in Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures. ACM, 2009, pp. 233–244.

[117] A. R. Bradley, Z. Manna, and H. B. Sipma, “What’s decidable about arrays?” in
International Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 2006, pp. 427–442.

[118] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
ACM, 1977, pp. 238–252.

[119] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic predicate
abstraction of c programs,” in ACM SIGPLAN Notices, vol. 36, no. 5. Citeseer, 2001,
pp. 203–213.

[120] I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant generation via abductive
inference,” in Acm Sigplan Notices, vol. 48, no. 10. ACM, 2013, pp. 443–456.

[121] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as constraint solving,”
ACM SIGPLAN Notices, vol. 43, no. 6, pp. 281–292, 2008.

[122] A. Gupta and A. Rybalchenko, “Invgen: An efficient invariant generator,” in Interna-
tional Conference on Computer Aided Verification. Springer, 2009, pp. 634–640.

132



[123] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant generation
using non-linear constraint solving,” in International Conference on Computer Aided
Verification. Springer, 2003, pp. 420–432.

[124] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin, “Quickly detecting relevant
program invariants,” in Proceedings of the 22nd international conference on Software
engineering. ACM, 2000, pp. 449–458.

[125] A. Champion, T. Chiba, N. Kobayashi, and R. Sato, “Ice-based refinement type
discovery for higher-order functional programs,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2018, pp.
365–384.

[126] P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan, “Horn-ice learning
for synthesizing invariants and contracts,” Proceedings of the ACM on Programming
Languages, vol. 2, no. OOPSLA, p. 131, 2018.

[127] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as classifiers,” in International
Conference on Computer Aided Verification. Springer, 2012, pp. 71–87.

[128] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori, “A data driven
approach for algebraic loop invariants,” in European Symposium on Programming.
Springer, 2013, pp. 574–592.

[129] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori, “Verification as learning
geometric concepts,” in International Static Analysis Symposium. Springer, 2013, pp.
388–411.

[130] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Learning universally quantified
invariants of linear data structures,” in International Conference on Computer Aided
Verification. Springer, 2013, pp. 813–829.

[131] H. Zhu, A. V. Nori, and S. Jagannathan, “Learning refinement types,” in ACM
SIGPLAN Notices, vol. 50, no. 9. ACM, 2015, pp. 400–411.

[132] Z. Pavlinovic, A. Lal, and R. Sharma, “Inferring annotations for device drivers from
verification histories,” in 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2016, pp. 450–460.

[133] S. Padhi, R. Sharma, and T. Millstein, “Data-driven precondition inference with learned
features,” ACM SIGPLAN Notices, vol. 51, no. 6, pp. 42–56, 2016.

[134] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin, “Automated verification of shape,
size and bag properties via user-defined predicates in separation logic,” Science of
Computer Programming, vol. 77, no. 9, pp. 1006–1036, 2012.

[135] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape analysis via 3-valued logic,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 24, no. 3,
pp. 217–298, 2002.

133



[136] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang, “Compositional shape analysis
by means of bi-abduction,” in ACM SIGPLAN Notices, vol. 44, no. 1. ACM, 2009,
pp. 289–300.

[137] Q. L. Le, C. Gherghina, S. Qin, and W.-N. Chin, “Shape analysis via second-order
bi-abduction,” in International Conference on Computer Aided Verification. Springer,
2014, pp. 52–68.

[138] A. Albargouthi, J. Berdine, B. Cook, and Z. Kincaid, “Spatial interpolants,” in European
Symposium on Programming Languages and Systems. Springer, 2015, pp. 634–660.

[139] S. Itzhaky, N. Bjørner, T. Reps, M. Sagiv, and A. Thakur, “Property-directed shape
analysis,” in International Conference on Computer Aided Verification. Springer, 2014,
pp. 35–51.

[140] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham, “Property-directed
inference of universal invariants or proving their absence,” Journal of the ACM (JACM),
vol. 64, no. 1, p. 7, 2017.

[141] A. Lal and S. Qadeer, “Powering the static driver verifier using corral,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 202–212.

[142] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and static driver verifier:
Technology transfer of formal methods inside microsoft,” in International Conference
on Integrated Formal Methods. Springer, 2004, pp. 1–20.

[143] A. Lal, S. Qadeer, and S. K. Lahiri, “A solver for reachability modulo theories,” in
International Conference on Computer Aided Verification. Springer, 2012, pp. 427–443.

[144] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko, “Synthesizing software
verifiers from proof rules,” in ACM SIGPLAN Notices, vol. 47, no. 6. ACM, 2012, pp.
405–416.

[145] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer
computations. Springer, 1972, pp. 85–103.

[146] A. Thakur, A. Lal, J. Lim, and T. Reps, “Posthat and all that: Automating abstract
interpretation,” Electronic Notes in Theoretical Computer Science, vol. 311, pp. 15–32,
2015.

[147] G. Fedyukovich, S. J. Kaufman, and R. Bodík, “Sampling invariants from frequency
distributions,” in 2017 Formal Methods in Computer Aided Design (FMCAD). IEEE,
2017, pp. 100–107.

[148] H. Zhu, S. Magill, and S. Jagannathan, “A data-driven chc solver,” in ACM SIGPLAN
Notices, vol. 53, no. 4. ACM, 2018, pp. 707–721.

134



[149] Y. Vizel, A. Gurfinkel, S. Shoham, and S. Malik, “Ic3-flipping the e in ice,” in In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation.
Springer, 2017, pp. 521–538.

[150] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model checking with
slam,” Communications of the ACM, vol. 54, no. 7, pp. 68–76, 2011.

[151] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur, “The yogi project: Software
property checking via static analysis and testing,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2009, pp.
178–181.

[152] N. Littlestone, “Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm,” Machine learning, vol. 2, no. 4, pp. 285–318, 1988.

[153] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” in ACM SIGPLAN Notices,
vol. 43, no. 6. ACM, 2008, pp. 159–169.

[154] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random testing,” in
ACM Sigplan Notices, vol. 40, no. 6. ACM, 2005, pp. 213–223.

[155] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for c,” in ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 263–272.

[156] N. Tillmann and W. Schulte, “Parameterized unit tests,” in ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 253–262.

[157] D. Neider, S. Saha, and P. Madhusudan, “Synthesizing piece-wise functions by learning
classifiers,” in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2016, pp. 186–203.

[158] A. Reynolds, V. Kuncak, C. Tinelli, C. Barrett, and M. Deters, “Refutation-based
synthesis in smt,” Formal Methods in System Design, pp. 1–30, 2017.

[159] A. Astorga, S. Srisakaokul, X. Xiao, and T. Xie, “Preinfer: Automatic inference of
preconditions via symbolic analysis,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2018, pp. 678–689.

[160] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer, “What good are strong speci-
fications?” in Proceedings of the 2013 international conference on Software Engineering.
IEEE Press, 2013, pp. 262–271.

[161] X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies of loop problems
for structural test generation via symbolic execution,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 2013, pp.
246–256.

135



[162] S. Thummalapenta, T. Xie, N. Tillmann, J. De Halleux, and Z. Su, “Synthesizing
method sequences for high-coverage testing,” in ACM SIGPLAN Notices, vol. 46, no. 10.
ACM, 2011, pp. 189–206.

[163] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo, “Automatic inference of necessary
preconditions,” in International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2013, pp. 128–148.

[164] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing for java,” in
OOPSLA Companion, 2007, pp. 815–816.

[165] T. Gehr, D. Dimitrov, and M. Vechev, “Learning commutativity specifications,” in
International Conference on Computer Aided Verification. Springer, 2015, pp. 307–323.

[166] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discovering
likely program invariants to support program evolution,” IEEE Transactions on Software
Engineering, vol. 27, no. 2, pp. 99–123, 2001.

[167] S. Sankaranarayanan, S. Chaudhuri, F. Ivančić, and A. Gupta, “Dynamic inference of
likely data preconditions over predicates by tree learning,” in Proceedings of the 2008
international symposium on Software testing and analysis. ACM, 2008, pp. 295–306.

[168] A. Albarghouthi, I. Dillig, and A. Gurfinkel, “Maximal specification synthesis,” in ACM
SIGPLAN Notices, vol. 51, no. 1. ACM, 2016, pp. 789–801.

136


