
10

Compositional Synthesis of Piece-Wise Functions

by Learning Classifiers

DANIEL NEIDER, RWTH Aachen University

SHAMBWADITYA SAHA and P. MADHUSUDAN, University of Illinois at Urbana-Champaign

We present a novel general technique that uses classifier learning to synthesize piece-wise functions (func-

tions that split the domain into regions and apply simpler functions to each region) against logical synthesis

specifications. Our framework works by combining a synthesizer of functions for fixed concrete inputs and

a synthesizer of predicates that can be used to define regions. We develop a theory of single-point refutable

specifications that facilitate generating concrete counterexamples using constraint solvers. We implement

the framework for synthesizing piece-wise functions in linear integer arithmetic, combining leaf expression

synthesis using constraint-solving with predicate synthesis using enumeration, and tie them together using a

decision tree classifier. We demonstrate that this compositional approach is competitive compared to existing

synthesis engines on a set of synthesis specifications.

CCS Concepts: • Software and its engineering → Automatic programming; Constraint and logic lan-

guages; • Computing methodologies → Supervised learning by classification; • Theory of computation

→ Computational geometry;

Additional Key Words and Phrases: Program synthesis, piece-wise functions, constraint solving, machine

learning, counterexamples

ACM Reference format:

Daniel Neider, Shambwaditya Saha, and P. Madhusudan. 2018. Compositional Synthesis of Piece-Wise Func-

tions by Learning Classifiers. ACM Trans. Comput. Logic 19, 2, Article 10 (May 2018), 23 pages.

https://doi.org/10.1145/3173545

1 INTRODUCTION

The field of synthesis is an evolving discipline in formal methods that is seeing a renaissance,
mainly due to a variety of new techniques (Alur et al. 2015) to automatically synthesize small ex-
pressions or programs that are useful in niche application domains, including end-user program-
ming (Gulwani 2011), filling holes in program sketches (Solar-Lezama et al. 2006), program trans-
formations (Karaivanov et al. 2014; Cheung et al. 2014), automatic grading of assignments (Alur
et al. 2013; Singh et al. 2013), synthesizing network configurations and migrations (Saha et al.
2015b; McClurg et al. 2015), as well as synthesizing annotations, such as invariants or pre/post
conditions for programs (Garg et al. 2014a, 2016).

A shorter version of this article was presented at the conference TACAS (Neider et al. 2016). This material is based upon

work supported by the National Science Foundation under Grants No. 1138994 and No. 1527395.

Authors’ addresses: D. Neider, Chair of Computer Science 7, RWTH Aachen University, 52074 Aachen, Germany; email:

neider@automata.rwth-aachen.de; S. Saha and P. Madhusudan, University of Illinois at Urbana-Champaign, Department

of Computer Science, 201 North Goodwin Avenue, Urbana, IL 61801-2302, USA; emails: {ssaha6, madhu}@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1529-3785/2018/05-ART10 $15.00

https://doi.org/10.1145/3173545

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

https://doi.org/10.1145/3173545
mailto:permissions@acm.org
https://doi.org/10.1145/3173545

10:2 D. Neider et al.

Fig. 1. Learning classifiers.

The field of machine learning (Mitchell 1997) is close to program synthesis, especially when the
specification is a set of input-output examples. The subfield of inductive programming has a long
tradition in solving this problem using inductive methods that generalize from the sample to obtain
programs (Kitzelmann 2010). Machine learning, which is the field of learning algorithms that can
build predictors on data using samples/training data, is a rich field that encompasses algorithms
for several problems, including classification, regression, and clustering (Mitchell 1997).

The idea of using inductive synthesis for more general specifications than input-output exam-
ples has been explored extensively in program synthesis research. The counterexample guided
inductive synthesis (CEGIS) approach to program synthesis advocates pairing inductive learning
algorithms with a verification oracle: in each round, the learner learns inductively from a set of
(counter-)examples and proposes an expression which the verification oracle checks against the
specification and augments the set of samples with a new counterexample (Solar-Lezama et al.
2006). A majority of the current synthesis approaches rely on counterexample guided inductive
synthesis (Solar-Lezama et al. 2006; Garg et al. 2014a, 2016; Jha et al. 2010).

In this article, we consider logical specifications for synthesis, where the goal of synthesis is
to find some expression e for a function f , in a particular syntax, that satisfies a specification ∀�x .
ψ (�x).1 We will assume thatψ is quantifier-free, that the satisfiability of the quantifier-free theory of
the underlying logic is decidable, and that there is an effective algorithm that can produce models
when a formula is satisfiable. The goal of this article is to develop a framework for expression
synthesis that can learn piece-wise functions using a learning algorithm for classifiers with the help
of two other synthesis engines, one for synthesizing expressions for single inputs and another for
synthesizing predicates that separate concrete inputs from each other. The framework is general
in the sense that it is independent of the logic used to write specifications and the logic used to
express the synthesized expressions.

A piece-wise function is a function that partitions the input domain into a finite set of regions
and then maps each region using a simpler class of functions. The framework that we build for
expression synthesis is also counterexample-guided and proceeds in the following fashion (see
Figures 1 and 2 on Page 11):

—In every round, the learner proposes a piece-wise function H for f , and the verification
oracle checks whether it satisfies the specification. If not, then it returns one input �p on
which H is incorrect. (Returning such a counterexample is nontrivial; we will discuss this
issue below.)

—We show that we can now use an expression synthesizer for the single input �p, which syn-
thesizes an expression that maps �p to a correct value. The notion of when an expression

1Note that this syntax is expressive enough, of course, to describe input-output examples as well.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:3

maps an input to a correct value is also an unclear concept, which we will discuss later. The
expression synthesizer will depend on the underlying theory of basic expressions, and we
can use any synthesis algorithm that performs this task.

—Once we have the new expression, we compute for every counterexample input obtained
thus far the set of basic expressions synthesized so far that work correctly for these inputs.
This results in a set of samples, where each sample is of the form (�p,Z), where �p is a concrete
input and Z is the set of basic expressions that are correct for �p (see points with sets of
labels in figure above). The problem we need to solve now can be seen as a multi-label
classification problem—that of finding a mapping from every input to an expression that is
consistent with the set of samples.

—Since we want a classification that is a piece-wise function that divides the input domains
into regions, and since the predicates needed to define regions can be arbitrarily complex
and depend on the semantics of the underlying logical theory, we require a predicate synthe-
sizer that synthesizes predicates that can separate concrete inputs that have disjoint sets of
labels. Once we have such a set of predicates, we are equipped with an adequate granularity
of regions to find a piece-wise function.

—The final phase uses classification learning to generalize the samples to a function from all
inputs to basic expressions (see figure above). The learning should be biased toward finding
simple functions, finding few regions, or minimizing the Boolean expression that describes
the piece-wise function.

The framework above requires many components, in addition to the expression synthesizer
and predicate synthesizer. First, given a hypothesis function H and a specification ∀�x .ψ (f , �x), we
need to find a concrete counterexample input on which H is wrong. However, it turns out that, in
general, there may be no single input point that can demonstrate a violation of the specification
(e.g., the specification ψ (f ,x) := f (x + 1) � f (x) requires two input points, namely a concrete
value for x and x + 1, to show that a hypothesis is incorrect), and even if there was, finding one
may be hard. To address this problem, we

—develop a theory of single-point definable specifications whose definition ensures that single
counterexample inputs always exist; and

—define a subclass of such specifications, called single-point refutable specifications, for which
finding such counterexample inputs can be reduced to satisfiability problems over the un-
derlying logical domain (which is assumed to be decidable), hence providing an effective
way to compute counterexample inputs.

Our framework works robustly for the class of single-point refutable specifications, and we show
how to extract concrete counterexamples, how to automatically synthesize a new specification
tailored for any input �p to be given to the expression synthesizer, and how to evaluate whether
particular expressions work for particular inputs.

In current standard CEGIS approaches (Solar-Lezama et al. 2006; Alur et al. 2015), when H and
∀�x . ψ (f , �x) are presented, the teacher simply returns a concrete value of �x for which ¬ψ (H/f , �x)
is satisfied. We emphasize that such valuations for the universally quantified variables cannot be
interpreted as inputs on which H is incorrect (since the actual arguments of f can be arbitrary
complex expression over �x), and hence cannot be used in our framework. A simple example where
this problem manifests is the specification ψ (f ,x) := f (x + 1) = 0; given the hypothesis H with
H (1) = 1 andH (x) = 0 for all x � 1, a model for¬ψ (H/f ,x) would assign x the value 0, though 1 is
the actual input on whichH is incorrect. By contrast, the class of counterexamples we use is strictly
presented as inputs for the function being synthesized, and is different from those used in current

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:4 D. Neider et al.

CEGIS approaches. The framework of single-point refutable specifications and the counterexample
input generation procedures we build for them is crucial to be able to use classifiers to synthesize
expressions.

The classifier learning algorithm can be any learning algorithm for multi-label classification
(preferably with the learning bias as described above) but must ensure that the learned classifier
is consistent with the given samples. Machine-learning algorithms more often than not make mis-
takes and are not consistent with the sample, often because they want to generalize assuming that
the sample is noisy. In Section 4, we describe the second contribution of this article—an adaptation
of decision-tree learning to multi-label learning that produces classifiers that are consistent with
the sample. (We refer the reader to Mitchell (1997) and Quinlan (1993) for further details about
decision tree learning.) We also explore a variety of statistical measures used within the decision-
tree learning algorithm to bias the learning towards smaller trees in the presence of multi-labeled
samples. The resulting decision-tree learning algorithms form one class of classifier learning algo-
rithms that can be used to synthesize piece-wise functions over any theory that works using our
framework.

The third contribution of the article is an instantiation of our framework to build an efficient
synthesizer of piece-wise linear integer arithmetic functions for specifications given in the theory
of linear integer arithmetic. We implement the components of the framework for single-point
refutable functions: to synthesize input counterexamples, to reformulate the synthesis problem
for a single input, and to evaluate whether an expression works correctly for any input. These
problems are reduced to the satisfiability of the underlying quantifier-free theory of linear integer
arithmetic, which is decidable using SMT solvers. The expression-synthesizer for single inputs is
performed using an inner CEGIS-based engine using a constraint solver. The predicate synthesizer
is instantiated using an enumerative synthesis algorithm. The resulting solver works extremely
well on a large class of benchmarks drawn from the SyGuS 2015 synthesis competition (Alur et al.
2016a) (linear integer arithmetic track) where a version of our solver fared significantly better than
all the traditional SyGuS solvers (enumerative, stochastic, and symbolic constraint-based solvers).
In our experience, finding an expression that satisfies a single input is a much easier problem
for current synthesis engines (where constraint solvers that compute the coefficients defining
such an expression are effective) than finding one that satisfies all inputs. The decision-tree based
classification, on the other hand, solves the problem of generalizing this labeling to the entire
input domain effectively.

Related Work

Our learning task is closely related to the syntax-guided synthesis framework (SyGuS) (Alur et al.
2015), which provides a language, similar to SMTLib (Barrett et al. 2015), to describe synthesis
problems. Several solvers following the counterexample-guided inductive synthesis approach
(CEGIS) (Solar-Lezama et al. 2006) for SyGuS have been developed (Alur et al. 2015), including
an enumerative solver, a solver based on constraint solving, one based on stochastic search, and
one based on the program synthesizer Sketch (Solar-Lezama 2013). Recently, a solver based on
CVC4 (Reynolds et al. 2015) has also been presented.

There has been several works on synthesizing piece-wise affine models of hybrid dynamical sys-
tems from input-output examples (Alur and Singhania 2014; Bemporad et al. 2005; Ferrari-Trecate
et al. 2003; Vidal et al. 2003) (we refer the reader to Paoletti et al. (2007) for a comprehensive survey).
The setting there is to learn an affine model passively (i.e., without feedback whether the synthe-
sized model satisfies some specification) and, consequently, only approximates the actual system.
A tool for learning guarded affine functions, which uses a CEGIS approach, is Alchemist (Saha
et al. 2015a). In contrast to our setting, it requires that the function to synthesize is unique.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:5

The learning framework we develop in this article, as well as the synthesis algorithms we use
for linear-arithmetic (the outer learner, the expression synthesizer and the predicate synthesizer)
can be seen as an abstract learning framework (Löding et al. 2016).

2 THE SYNTHESIS PROBLEM AND SINGLE-POINT REFUTABLE SPECIFICATIONS

The synthesis problem we tackle in this article is that of finding a function f that satisfies a logical
specification of the form ∀�x . ψ (f , �x), where ψ is a quantifier-free first-order formula over a logic
with fixed interpretations of constants, functions, and relations (except for f). Further, we will
assume that the quantifier-free fragment of this logic admits a decidable satisfiability problem and
furthermore, effective procedures for producing a model that maps the variables to the domain of
the logic are available. These effective procedures are required to generate counterexamples while
performing synthesis.

For the rest of the article, let f be a function symbol with arityn representing the target function
that is to be synthesized. The specification logic is a formula in first-order logic, over an arbitrary
set of function symbols F , (including a special symbol f), constants C, and relations/predicates
P, all of which with fixed interpretations, except for f . We will assume that the logic is interpreted
over a countable universe D and, further, and that there is a constant symbol for every element in
D. For technical reasons, we assume that negation is pushed into atomic predicates.

The specification for synthesis is a formula of the form ∀�x . ψ (f , �x), where ψ is a formula ex-
pressed in the following grammar (where д ∈ F , c ∈ C, and P ∈ P):

Term t :: − x | c | f (t1, . . . , tn) | д(�t),

Formula φ :: − P (�t) | ¬P (�t) | φ ∨ φ | φ ∧ φ.

We will assume that equality is a relation in the logic, with the standard model-theoretic interpre-
tation.

The synthesis problem is to find, given a specification ∀�x . ψ (f , �x), a definition for the function
f in a particular syntax that satisfies the specification. More formally, given a subset of function

symbols F̂ ⊆ F (excluding f) and a subset of constants Ĉ and a subset of relation/predicate sym-

bols P̂ ⊆ P, the task is to find an expression e for f that is a term with free variables y1, . . . ,yn

adhering to the following syntax (where д̂ ∈ F̂ , ĉ ∈ Ĉ, P̂ ∈ P̂):

Expr e :: − ĉ | yi | д̂(�t) | ite(P̂ (�t), e, e),

such that e satisfies the specification (i.e., ∀�x . ψ (e/f , �x) is valid).

2.1 Single-Point Definable Specifications

To be able to define a general CEGIS algorithm for synthesizing expressions for f based on learn-
ing classifiers, as described in Section 1, we need to be able to refute any hypothesis H that does
not satisfy the specification with a concrete input on which H is wrong. We will now define suf-
ficient conditions that guarantee this property. The first is a semantic property, called single-point
definable specifications, that guarantees the existence of such concrete input counterexamples and
the second is a syntactic fragment of the former, called single-point refutable specifications, that
allows such concrete counterexamples to be found effectively using a constraint solver.

A single-point definable specification is, intuitively, a specification that restricts how each input
is mapped to the output, independent of how other inputs are mapped to outputs. More precisely,
a single-point definable specification restricts each input �p ∈ Dn to a set of outputs X�p ⊆ D and
allows any function that respects this restriction for each input. It cannot, however, restrict the

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:6 D. Neider et al.

output on �p based on how the function behaves on other inputs. Many synthesis problems fall
into this category (see Section 6 for several examples taken from a recent synthesis competition).

Formally, we define this concept as follows. Let I = Dn be the set of inputs andO = D be the set
of outputs of the function being synthesized.

Definition 2.1 (Single-Point Definable (SPD) Specifications). A specification α is said to be single-
point definable if the following holds. Let F be the class of all functions that satisfy the specification
α . Let д : I → O be a function such that for every �p ∈ I , there exists some h ∈ F such that д(�p) =
h(�p). Then, д ∈ F (i.e., д satisfies the specification α).

Intuitively, a specification is single-point definable if whenever we construct a function that
maps each input independently according to some arbitrary function that satisfies the specifica-
tion, the resulting function satisfies the specification as well. For each input �p, if X�p is the set of

all outputs that functions that meet the specification map �p to, then any function д that maps
every input �p to some element in X�p will also satisfy the specification. This captures the require-
ment, semantically, that the specification constrains the outputs of each input independent of other
inputs.

Let us illustrate this definition with the following examples.

Example 2.2. Consider the following specifications in the first-order theory of arithmetic:

—The specification

∀x ,y. f (15, 23) = 19 ∧ f (90, 20) = 91 ∧ . . . ∧ f (28, 24) = 35

is single-point definable. More generally, any set of input-output samples can be written as
a conjunction of constraints that forms a single-point definable specification.

—Any specification that is not realizable (i.e., that has no function that satisfies it) is single-
point definable.

—The specification

∀x . f (0) = 0 ∧ f (x + 1) = f (x) + 1

is single-point definable as the identity function is the only function that satisfies this
specification. More generally, any specification that has a unique solution is single-point
definable.

While single-point definable specifications are quite common, there are prominent specifica-
tions that are not single-point definable. For example, inductive loop invariant synthesis specificat-
ions for programs are not single-point definable, as counterexamples to the inductiveness con-
straint involve two counterexample inputs (the ICE learning model (Garg et al. 2014a) formalizes
this). Similarly, ranking function synthesis is also not single-point definable.

Note that for any single-point definable specification, if H is some expression conjectured for
f that does not satisfy the specification, there will always be one input �p ∈ Dn on which H is
definitely wrong in that no correct solution agrees with H on �p. More precisely, we obtain the
following directly from the definition.

Proposition 2.3. Let ∀�x . ψ (f , �x) be a single-point definable specification and let h : Dn → D be
an interpretation for f such that ∀�x . ψ (f , �x) does not hold. Then, there exists an input �p ∈ Dn such
that for every function h′ : Dn → D that satisfies the specification, h(�p) � h′(�p).

2.2 Single-Point Refutable Specifications

While the above proposition ensures that there is a counterexample input for any hypothesized
function that does not satisfy a single-point definable function, it does not ensure that finding

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:7

such an input is tractable. We now define single-point refutable specifications, which we show to
be a subclass of single-point definable specifications, and for which we can reduce the problem of
finding counterexample inputs to logical satisfiability of the underlying quantifier-free logic.

Intuitively, a specification ∀�x . ψ (f , �x) is single-point refutable if for any given hypothetical
interpretation H to the function f that does not satisfy the specification, we can find a particular
input �p ∈ Dn such that the formula ∃�x . ¬ψ (f , �x) evaluates to true, and where the truth-hood is
caused solely by the interpretation ofH on �p . The definition of single-point refutable specifications
is involved, as we have to define what it means for H on �p to solely contribute to falsifying the
specification.

We first define an alternate semantics for a formula ψ (f , �x) that is parameterized by a set of n
variables �u denoting an input, a variable v denoting an output, and a Boolean variable b. The idea
is that this alternate semantics evaluates the function by interpreting f on �u to bev , but “ignores”
the interpretation of f on all other inputs, and reports whether the formula would evaluate to b.
We do this by expanding the domain to D ∪ {⊥}, where ⊥ is a new element, and have f map all
inputs other than �u to ⊥. Furthermore, when evaluating formulas, we let them evaluate to b only
when we are sure that the evaluation of the formula to b depended only on the definition of f on
�u. We define this alternate semantics by transforming a formulaψ (f , �x) to a formula with the usual
semantics but over an extended domain D+ = D ∪ {⊥}. In this transformation, we use if-then-else
(ite) terms for simplicity. Moreover, given a vector �z = (z1, . . . , z�) (e.g., of variables), we use �z[i]
as a shorthand for the i-th entry zi of �z (i.e., z[i] = zi) throughout the rest of this article.

Definition 2.4 (Isolate Transformer). Let �u be a vector of n first-order variables (where n is the
arity of the function to be synthesized), v a first-order variable (different from ones in �u), and
b ∈ {T , F } a Boolean value. Moreover, letD+ = D ∪ {⊥}, where⊥ � D, be the extended domain, and
let the functions and predicates be extended to this domain (the precise extension does not matter).

For a formulaψ (f , �x), we define the formula Isolate�u,v,b (ψ (f , �x)) over D+ by

Isolate�u,v,b (ψ (f , �x)) := ite
��
�

∨
xi

xi = ⊥,¬b, Isol�u,v,b (ψ (f , �x))��
�
,

where Isol�u,v,b is defined recursively as follows:

Isol�u,v,b (x) := x ,

Isol�u,v,b (c) := c,

Isol�u,v,b (д(t1, . . . , tk)) := ite �
�

k∨
i=1

Isol�u,v,b (ti) = ⊥,⊥,д
(
Isol�u,v,b (t1), . . . , Isol�u,v,b (tk)

)�
�
,

Isol�u,v,b (f (t1, . . . , tn)) := ite �
�

n∧
i=1

Isol�u,v,b (ti) = �u[i],v,⊥�
�
,

Isol�u,v,b (P (t1, . . . , tk)) := ite �
�

k∨
i=1

Isol�u,v,b (ti) = ⊥,¬b, P
(
Isol�u,v,b (t1), . . . , Isol�u,v,b (tk)

)�
�
,

Isol�u,v,b (¬P (t1, . . . , tk)) := ite �
�

k∨
i=1

Isol�u,v,b (ti) = ⊥,¬b,¬P
(
Isol�u,v,b (t1), . . . , Isol�u,v,b (tk)

)�
�
,

Isol�u,v,b (φ1 ∨ φ2) := Isol�u,v,b (φ1) ∨ Isol�u,v,b (φ2),

Isol�u,v,b (φ1 ∧ φ2) := Isol�u,v,b (φ1) ∧ Isol�u,v,b (φ2).

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:8 D. Neider et al.

Intuitively, the function Isolate�u,v,b (ψ) captures whether ψ will evaluate to b if f maps �u to v
and independent of how f is interpreted on other inputs. A function of the form f (t1, . . . tn) is
interpreted to be v if the input matches �u and otherwise evaluated to ⊥. Functions on terms that
involve ⊥ are sent to ⊥ as well. Predicates are evaluated to b only if the predicate is evaluated
on terms none of which is ⊥—otherwise, they get mapped to ¬b, to reflect that it will not help to
make the final formulaψ evaluate to b. Note that when Isolate�u,v,b (ψ) evaluates to ¬b, there is no
property of ψ that we claim. Also, note that Isolate�u,v,b (ψ (f , �x)) has no occurrence of f in it, but
has free variables �x , �u and v . The following examples illustrates the isolate transformer.

Example 2.5. Consider the (single-point refutable) specification

ψ (f ,x) = f (x) > x + 1

in linear integer arithmetic over a single variable x . The formula Isol�u,v,b will have free variables
x , u, and v (note that x and u are variables not vectors of variables in this example).

In the first step, we adapt the semantics of the operator + and the predicate > to account for the
new value ⊥ by introducing a new operator +⊥ and a new predicate >⊥. Given two terms t1 and
t2, the operator +⊥ is defined by

t1 +⊥ t2 := ite
(
t1 = ⊥ ∨ t2 = ⊥,⊥, t1 + t2

)
,

while the predicate >⊥ is defined by

t1 >⊥ t2 := ite
(
t1 = ⊥ ∨ t2 = ⊥,⊥, t1 > t2

)
.

In both cases, the result is ⊥ if one one of the terms evaluates to ⊥, whereas the original semantics
is retained otherwise.

In the second step, we can now apply the isolate transformer toψ :

Isol�u,v,b (ψ (f ,x)) = Isol�u,v,b (f (x) > x + 1)

= Isol�u,v,b (f (x)) >⊥
(
Isol�u,v,b (x) +⊥ Isol�u,v,b (1)

)
= ite(x = u,v,⊥) >⊥ (x +⊥ 1).

In total, we obtain

Isolate�u,v,b (ψ (f ,x)) = ite
(
x = ⊥,¬b, ite(x = u,v,⊥) >⊥ (x +⊥ 1)

)
,

which captures whetherψ will evaluate to b if f maps u to v (and independent of how f is inter-
preted on other inputs).

We can show (using a induction over the structure of the specification) that the isolation of
a specification to a particular input with b = F , when instantiated according to a function that
satisfies a specification, cannot evaluate to false. This is formalized below.

Lemma 2.6. Let ∀�x .ψ (f , �x) be a specification and h : Dn → D a function satisfying the specifica-
tion. Then, there is no interpretation of the variables in �u and �x (over D) such that if v is interpreted
as h(�u), the formula Isolate�u,v,F (ψ (f , �x)) evaluates to false.

Proof. Let∀�x .ψ (f , �x) be a specification andh : Dn → D a function satisfying the specification.
Moreover, let �u a vector of variables over the domain D, v a variable over D, and b ∈ {T , F } a
Boolean value. Finally, fix a valuation dz ∈ D for each free variable z in Isolate�u,v,b (ψ (f , �x)) such
that dv = h(du[1], . . . ,du[n]).

We split the proof into two parts:

(1) We show that if Isol�u,v,b (t) evaluates to a non-⊥ value (i.e., to a value in D) for a term t ,
then t evaluates to the same value.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:9

(2) Using Part 1, we show that if Isol�u,v,F (φ) evaluates to false for a formula φ, the formula φ
evaluates to false as well.

The claim of Lemma 2.6 then follow immediately from Part 2 and the definition of Isolate�u,v,b ,
since h satisfies the specification and the variable v is interpreted as h(�u).

Proof of Part 1. We prove the first part using an induction over the structure of a term t .

Base case. Let t = x or t = c . Then, the claim holds immediately by definition of Isol�u,v,b .
Induction step. In the induction step, we distinguish between t = д(t1, . . . , tk) and t = f (t1,
. . . , tn).
—Let t = д(t1, . . . , tk) and assume that Isol�u,v,b (t) evaluates to a non-⊥ value, say
d ∈ D. By definition of Isol�u,v,b , this means that Isol�u,v,b (ti) evaluates to a non-
⊥ value, say di ∈ D, for each i ∈ {1, . . . ,k }. Moreover, Isol�u,v,b (t) evaluates to
д(Isol�u,v,b (t1), . . . , Isol�u,v,b (tk)) and, hence, d = д(d1, . . . ,dk). Applying the induction
hypothesis now yields that ti also evaluates to di . Since t = д(t1, . . . , tk), this means
that t evaluates to d , as claimed.

—Let t = f (t1, . . . , tn) and assume that Isol�u,v,b (t) evaluates to a non-⊥ value. By
definition of Isol�u,v,b , this means that Isol�u,v,b (ti) = �u[i] for i ∈ {1, . . . ,n}, Moreover,
Isol�u,v,b (t) evaluates to dv . Applying the induction hypothesis now yields that ti evalu-
ates tod�u[i] ∈ D for each i ∈ {1, . . . ,n}. Since t = f (t1, . . . , tn) = f (�u[1], . . . , �u[n]) andv
is interpreted as h(�v), this means that t evaluates to h(d�u[1], . . . ,d�u[n]) = dv , as claimed.

Proof of Part 2. We prove the second part using an induction over the structure of a formula φ.
Recall that we fix b = F for this part of the proof.

Base case. In the induction step, we distinguish between the two cases φ = P (t1, . . . , tk)
and φ = ¬P (t1, . . . , tk).
—Let φ = P (t1, . . . , tk) and assume that Isol�u,v,F (φ) evaluates to false. By definition of

Isol�u,v,b , this means that Isol�u,v,F (ti) evaluates to a non-⊥ value, say di ∈ D, for each
i ∈ {1, . . . ,k }. Moreover, Isol�u,v,F (φ) evaluates to P (Isol�u,v,F (t1), . . . , Isol�u,v,F (tk)) and,
hence, P (d1, . . . ,dk) evaluates to false. The first part of the proof now yields that ti
evaluates to di . Since φ = P (t1, . . . , tk), this means that φ evaluates to false, as claimed.

—The case φ = ¬P (t1, . . . , tk) is analogous to the case φ = P (t1, . . . , tk) and therefore
skipped.

Induction step. In the induction step, we distinguish between the two cases φ = φ1 ∨ φ2

and φ = φ1 ∧ φ2.
—Let φ = φ1 ∨ φ2 and assume that Isol�u,v,F (φ) evaluates to false. Thus, both Isol�u,v,F (φ1)

and Isol�u,v,F (φ2) evaluate to false. Applying the induction hypothesis yields that both
φ1 and φ2 evaluate to false. Thus, φ = φ1 ∨ φ2 evaluates to false, as claimed.

—The case φ = φ1 ∧ φ2 is analogous to the case φ = φ1 ∨ φ2 and therefore skipped. �

We can also show (again using structural induction) that when the isolation of the specification
with respect to b = F evaluates to false, then v is definitely not a correct output on �u.

Lemma 2.7. Let ∀�x . ψ (f , �x) be a specification, �p ∈ Dn an interpretation for �u, and q ∈ D an inter-
pretation forv such that there is some interpretation for �x that makes the formula Isolate�u,v,F (ψ (f , �x))
evaluate to false. Then, there exists no function h satisfying the specification that maps �p to q.

Proof. Let h be a function that satisfies the specification and maps �p to q. Then, ψ (f , �x) eval-
uates to true for every interpretation of �x . By Lemma 2.6, this means that Isolate�u,v,F (ψ (f , �x))
always evaluates to true or ⊥ (it cannot evaluate to false, because then φ would evaluate to false

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:10 D. Neider et al.

as well). However, this is a contradiction to the assumption that there exists an interpretation for
�x on which the formula Isolate�u,v,F (ψ (f , �x)) evaluates to false. �

We can now define single-point refutable specifications.

Definition 2.8 (Single-Point Refutable Specifications (SPR)). A specification ∀�x . ψ (f , �x) is said
to be single-point refutable if the following holds. Let H : Dn → D be any interpretation for the
function f that does not satisfy the specification (i.e., the specification does not hold under this
interpretation for f). Then, there exists some input �p that is an interpretation for �u and an interpre-
tation for �x such that when v is interpreted to be H (�u), the isolated formula Isolate�u,v,F (ψ (f , �x))
evaluates to false.

Intuitively, the above says that a specification is single-point refutable if whenever a hypothesis
function H does not satisfy a specification, there is a single input �p such that the specification
evaluates to false independent of how the function maps inputs other than �p. More precisely, ψ
evaluates to false for some interpretation of �x only assuming that f (�p) = H (�p).

In fact, single-point refutable specifications are single-point definable, which we formalize be-
low.

Lemma 2.9. If a specification ∀�x .ψ (f , �x) is single-point refutable, then it is single-point definable.

Proof. Let ∀�x .ψ (f , �x) be a single-point refutable specification, and assume that it is not single-
point definable. Moreover, let F be the class of all functions that satisfy this specification. Then,
there exists a functionh′ : Dn → D such that for every input �p ∈ Dn , there exists some functionh ∈
F such that h′(�p) = h(�p), and yet h′ does not satisfy the specification. By single-point refutability
of the specification, there must be some input �p such that when we interpretv = h′(�p), there is an
interpretation of �x such that Isolate�u,v,F (ψ (f , �x)) evaluates to false. Let h ∈ F be some function

that agrees with h′ on �p. By Lemma 2.7, there is no function that satisfies the specification and that
maps �u to v , which contradicts the fact that h satisfies the specification. �

Let us illustrate the definition of single-point refutable specifications through an example and a
non-example.

Example 2.10. Consider the following specifications in the first-order theory of arithmetic:

—The specification

∀x ,y. f (15, 23) = 19 ∧ f (90, 20) = 91 ∧ . . . ∧ f (28, 24) = 35

is single-point refutable. More generally, any set of input-output samples can be written as
a conjunction of constraints that forms a single-point refutable specification.

—The specification

∀x . f (0) = 0 ∧ f (x + 1) = f (x) + 1

is not a single-point refutable specification, though it is single-point definable. Given a hy-
pothesis function (e.g.,H (i) = 0 for all i), the formula f (x + 1) = f (x) + 1 evaluates to false,
but this involves the definition of f on two inputs, and hence we cannot isolate a single in-
put on which the function H is incorrect. (In evaluating the isolated transformation of the
specification parameterized with b = F , at least one of f (x + 1) and f (x) will evaluate to ⊥
and, hence, the whole formula will never evaluate to false.)

When a specification ∀�x .ψ (f , �x) is single-point refutable, given an expression H for f that does
not satisfy the specification, we can check satisfiability of the formula

∃�u ∃v∃�x .
(
v = H (�u) ∧ ¬Isolate�u,v,F (ψ (H/f , �x))

)
.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:11

Fig. 2. The general synthesis framework based on learning classifiers.

Assuming the underlying quantifier-free theory has a decidable satisfiability problem and one can
construct models, the valuation of �u gives a concrete input �p, and Lemma 2.7 shows that H is
definitely wrong on this input. This will form the basis of generating counterexample inputs in
the synthesis framework that we present next.

3 A GENERAL SYNTHESIS FRAMEWORK BY LEARNING CLASSIFIERS

We now present our general framework for synthesizing functions over a first-order theory
that uses machine learning of classifiers. Our technique, as outlined in the Introduction, is
a counterexample-guided inductive synthesis approach (CEGIS) and works most robustly for
single-point refutable specifications.

Given a single-point refutable specification∀�x .ψ (f , �x), the framework combines several simpler
synthesizers and calls to SMT solvers to synthesize a function, as depicted in Figure 2. The solver
globally maintains a finite set of expressions E, a finite set of predicates A (also called attributes),
and a finite set S of multi-labeled samples, where each sample is of the form (�p,Z) consisting of
an input �p ∈ Dn and a set Z ⊆ E of expressions that are correct for �p (such a sample means that
the specification allows mapping �p to e (�p), for any e ∈ Z , but not to e ′(�p), for any e ′ ∈ E \ Z).

Phase 1. In every round, the classifier produces a hypothesis expression H for f . The process
starts with a simple expression H , such as the one that maps all inputs to a constant. We feed H
in every round to a counterexample input finder module, which essentially is a call to an SMT
solver to check whether the formula

∃�u ∃v ∃�x . (v = H (�u) ∧ ¬Isolate�u,v,F (ψ (f , �x)))

is satisfiable. Note that from the definition of the single-point refutable functions (see
Definition 2.8), whenever H does not satisfy the specification, we are guaranteed that this
formula is satisfiable, and the valuation of �u in the satisfying model gives us an input �p on which
H is definitely wrong (see Lemma 2.7). If H satisfies the specification, then the formula would be
unsatisfiable (by Lemma 2.6) and we can terminate, reporting H as the synthesized expression.

Phase 2. The counterexample input �p is then fed to an expression synthesizer whose goal is to
find some correct expression that works for �p. We facilitate this by generating a new specification
for synthesis that tailors the original specification to the particular input �p. This new specification
is the formula

ψ↓�p (f̂ , �x) := Isolate�u,v,T (ψ (f , �x))[�p/�u, f̂ (�p)/v].

Intuitively, the above specification asks for a function f̂ that “works” for the input �p (i.e., there

exists a function д satisfying the specification such that д(�p) = f̂ (�p)). We do this by first construct-
ing the formula that isolates the specification to �u with outputv and demand that the specification

evaluates to true; then, we substitute �p for �u and a new function symbol f̂ evaluated on �p for v .

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:12 D. Neider et al.

Any expression synthesized for f̂ in this synthesis problem maps �p to a value that is consistent
with the original specification, which we formalize next.

Lemma 3.1. Let ψ (f , �x) be a single-point refutable specification and F the class of all functions
satisfying ψ (f , �x). Moreover, let �p ∈ Dn be an input to f , and let e be a solution to the synthesis

problem with specificationψ↓�p (f̂ , �x). Then, there exists a function д ∈ F such that д(�p) = e (�p).

Proof. Using similar arguments as in the proof of Lemma 2.6, we can show that if Isol�u,v,T (φ)
(and, hence, Isolate�u,v,T (φ)) evaluates to true on some valuation of the free variables �x , �u, and v ,

then the formula φ also evaluates to true on the valuation for �x . Thus, by substituting �p for �u in
Isolate�u,v,T (ψ (f , �x)), we know that if Isolate�u,v,T (ψ (f , �x))[�p/�u] evaluates to true, thenψ evaluates

to true if f maps �p tov . Moreover, by substituting f̂ (�p) forv , we obtain the specificationψ↓�p (f̂ , �x),

which constraints f̂ such that ψ (f , �x) to evaluates to true if f (�p) = f̂ (�p). Thus, any solution e to

the synthesis problem with specification ψ↓�p (f̂ , �x) guarantees that ψ (f , �x) evaluates to true if

f (�p) = e (�p).
Now, let h ∈ F some function satisfying ψ . Since ψ is single-point refutable (and, hence, also

single-point definable), the function

д(�x) =

{
e (�p) if �x = �p; and
h(�x) otherwise

also satisfies the specification. Thus, д is a function satisfying д ∈ F and д(�p) = e (�p). �

We emphasize that this new synthesis problem is simpler than the original problem (since it
only requires to synthesize an expression for a single input) and that we can use any (existing)
expression synthesizer to solve it. One important challenge in this context clearly is to synthesize
an expression that is “good” (or general) in the sense that it works for all (or at least many) inputs
in the region �p belongs to. One possible way to achieve this is to apply Occam’s razor principle
and synthesize an expression that is as simple as possible with respect to some total order of the
expressions (e.g., the length of the expression or the maximal nesting of sub-expressions). Another
way is to define a distance metric on inputs and synthesize an expression that does not only work
for the input �p but also for other known inputs in the sample S whose distance to �p is small. We
describe these two approaches and various further heuristics in more detail in Section 5.1, where
we present our implementation of a synthesizer for linear integer arithmetic expressions.

Phase 3. Once we synthesize an expression e that works for �p, we feed it to the next phase,
which adds e to the set of all expressions E (if e is new) and adds �p to the set of samples. It then
proceeds to find the set of all expressions in E that work for all the inputs in the samples, and
computes the new set of samples. To do this, we take every input �r that previously existed, and
ask whether e works for �r , and if it does, add e to the set of labels for �r . Also, we take the new
input �p and every expression e ′ ∈ E, and check whether e ′ works for �p.

To compute this labeling information, we need to be able to check, in general, whether an ex-
pression e ′ works for an input �r . We can do this using a call to an SMT solver that checks whether

the formula ∀�x . ψ↓�r (e ′(�r)/ f̂ (�r), �x) is valid.

Phase 4. We now have a set of samples, where each sample consists of an input and a set
of expressions that work for that input. This is when we look upon the synthesis problem as a
classification problem—that of mapping every input in the domain to an expression that generalizes
the sample (i.e., that maps every input in the sample to some expression that it is associated with
it). To do this, we need to split the input domain into regions defined by a set of predicates A. We

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:13

hence need an adequate set of predicates that can define enough regions that can separate the
inputs that need to be separated.

Let S be a set of samples and let A be a set of predicates. Two samples (�j,E1) and (�j ′,E2) are

said to be inseparable if for every predicate p ∈ A, p (�j) ≡ p (�j ′). The set of predicates A is said to
be adequate for a sample S if any set of inseparable inputs in the sample has a common label as

a classification. In other words, if every subset T ⊆ S , say T = {(�i1,E1), (�i2,E2), . . . (�it ,Et)}, where
every pair of inputs in T is inseparable, then

⋂t
i=1 Ei � ∅. We require the attribute synthesizer

to synthesize an adequate set of predicates A, given the set of samples.
Intuitively, ifT is a set of pairwise inseparable points with respect to a set of predicates P , then

no classifier based on these predicates can separate them, and hence they all need to be classified
using the same label; this is possible only if the set of points have a common expression label.

Phase 5. Finally, we give the samples and the predicates to a classification learner, which divides
the set of inputs into regions, and maps each region to a single expression such that the mapping
is consistent with the sample. A region is a conjunction of predicates and the set of points in the
region is the set of all inputs that satisfy all these predicates. The classification is consistent with
the set of samples if for every sample (�r ,Z) ∈ S , the classifier maps �r to a label in Z . (In Section 4,
we present a general learning algorithm based on decision trees that learns such a classifier from
a set of multi-labeled samples, and which biases the classifier towards small trees.)

The classification synthesized is then converted to an expression in the logic (this will involve
nested ite expressions using predicates to define the regions and expressions at leaves to define
the function). The synthesized function is fed back to the counterexample input finder, as in
Phase 1, and the process continues until we manage to synthesize a function that meets the
specification.

4 MULTI-LABEL DECISION TREE CLASSIFIERS

In this section, we sketch a decision tree learning algorithm for a special case of the so-called
multi-label learning problem, which is the problem of learning a predictive model (i.e., a classifier)
from samples that are associated with multiple labels. (We refer to standard textbooks on machine
learning, e.g., Mitchell (1997), for more information on decision tree learning.) For the purpose of
learning the classifier, we assume samples to be vectors of the Boolean values B = {F ,T } (these en-
code the values of the various attributes on the counterexample input returned). The more general
case that datapoints also contain rational numbers can be handled in a straightforward manner as
in Quinlan’s C 5.0 algorithm (Quinlan 1993; RuleQuest Research 2015).

To make the learning problem precise, let us fix a finite set L = {λ1, . . . , λk } of labels with k ≥ 2,
and let �x1, . . . , �xm ∈ Bn be m individual inputs (in the following, also called datapoints). The task
we are going to solve, which we call disjoint multi-label learning problem (cf. Jin and Ghahramani
(2002)), is defined as follows.

Definition 4.1 (Disjoint Multi-Label Learning Problem). Given a finite training set S = {(�x1,Y1),
. . . , (�xm ,Ym)} where Yi ⊆ L and Yi � ∅ for every i ∈ {1, . . . ,m}, the disjoint multi-label learning
problem is to find a decision tree classifier h : Bn → L such that h(�x) ∈ Y for all (�x ,Y) ∈ S .

Note that this learning problem is a special case of the multi-label learning problem studied in
machine-learning literature, which asks for a classifier that predicts all labels that are associated
with a datapoint. Moreover, it is important to emphasize that we require our decision tree classifier
to be consistent with the training set (i.e., it is not allowed to misclassify datapoints in the training
set), in contrast to classical machine-learning settings where classifier are allowed to make (small)
errors.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:14 D. Neider et al.

ALGORITHM 1: Multi-label Decision Tree Learning Algorithm

Input: A finite set S ⊆ Bn × 2L of datapoints.

1 return DecTree (S , {1, . . . ,n}).

2 Procedure DecTree (Set of datapoints S , Attributes A)

3 Create a root node r .

4 if if all datapoints in S have a label in common (i.e., there exists a label λ such that λ ∈ Y for each

(�x ,Y) ∈ S) then

5 Select a common label λ and return the single-node tree r with label λ.

6 else

7 Select an attribute i ∈ A that (heuristically) best splits the sample S .

8 Split S into Si = {(�x ,Y) ∈ S | �x[i] = T } and S¬i = {(�x ,Y) ∈ S | �x[i] = F }.
9 Label r with attribute i and return the tree with root node r , left subtree DecTree (Si , A \ {i}),

and right subtree DecTree (S¬i , A \ {i}).
10 end

We use a straightforward modification of Quinlan’s C 5.0 algorithm (Quinlan 1993; RuleQuest
Research 2015) to solve the disjoint multi-label learning problem. This modification, sketched in
pseudo code as Algorithm 1, is a recursive algorithm that constructs a decision tree top-down. More
precisely, given a training set S , the algorithm heuristically selects an attribute i ∈ {1, . . . ,n} and
splits the set into two disjoint, nonempty subsets Si = {(�x ,Y) ∈ S | �x[i] = T } and S¬i = {(�x ,Y) ∈
S | �x[i] = F } (we explain shortly how the attribute i is chosen). Then the algorithm recurses on the
two subsets, whereby it no longer considers the attribute i . Once the algorithm arrives at a set S ′

in which all datapoints share at least one common label (i.e., there exists a λ ∈ L such that λ ∈ Y
for all (�x ,Y) ∈ S ′), it selects a common label λ (arbitrarily), constructs a single-node tree that is
labeled with λ, and returns from the recursion. However, it might happen during construction that
a set of datapoints does not have a common label and cannot be split by any (available) attribute.
In this case, it returns an error, as the set of attributes is not adequate (which we make sure does
not happen in our framework by synthesizing new attributes whenever necessary).

The following theorem states the correctness of Algorithm 1 (i.e., that the algorithm indeed
produces a solution to the disjoint multi-label learning problem), which is a result independent of
the exact way an attribute is chosen.

Theorem 4.2. Let L = {λ1, . . . , λk } be a set of labels with k ≥ 2 and S = {(�x1,Y1), . . . , (�xm ,Ym)} ⊆
B

n × 2L a finite training set where Yi � ∅ for every i ∈ {1, . . . ,n}. Moreover, assume that each
two distinct datapoints (�x ,Y), (�x ′,Y ′) ∈ S can be separated by some attribute i ∈ {1, . . . ,n}
(i.e., �x[i] � �x ′[i]). Then, Algorithm 1 terminates and returns a decision tree classifier h : Bn → L that
satisfies h(�x) ∈ Y for each (�x ,Y) ∈ S .

Proof. We show Theorem 4.2 by induction over the construction of the tree.

Base case. Assume that the function DecTreeis called with a set S of datapoint that share a
common label (i.e., that there exists a label λ such that λ ∈ Y for each (�x ,Y) ∈ S). Then, the
condition in Line 4 evaluates to true and the algorithm returns a decision tree h consisting
of a single node that is labeled with a label shared by all datapoints of S (see Line 5). Thus,
h satisfies h(�x) ∈ Y for each (�x ,Y) ∈ S .

Induction step. Assume that the function DecTreeis called with a set S of datapoints
that do not share a common label and a set A of available attributes. Then, the condition
in Line 4 is false, and the algorithm proceeds with Lines 7 to 9.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:15

First, we observe thatA � ∅: since we assume that all datapoints can be separated by an
attribute, A = ∅ implies that S is a singleton and, hence, the condition in Line 4 would be
true. Thus, the algorithm can pick an attribute i ∈ A (Line 7), partition S into two subsam-
ples Si , S¬i (Line 8), and recursively constructs the decision treeshi = DecTree(Si ,A \ {i})
and h¬i = DecTree(S¬i ,A \ {i}) (Line 9). Finally, it returns the decision tree h with root
node r whose subtrees are hi and h¬i , respectively.

Since the root of h is labeled with attribute i , one can write h as

h(�x) =

{
hi (�x) if �x[i] = T ; and
h¬i (�x) if �x[i] = F .

Moreover, applying the induction hypothesis yields that hi satisfies hi (�x) ∈ Y for each
(�x ,Y) ∈ Si and h¬i (�x) ∈ Y for each (�x ,Y) ∈ S¬i . Thus, if �x[i] = T for some (�x ,Y) ∈ S , then
(�x ,Y) ∈ Si and, hence, h(�x) = hi (�x) ∈ Y ; on the other hand, if �x[i] = F for some (�x ,Y) ∈
S¬i , then (�x ,Y) ∈ S¬i and, hence, h(�x) = h¬i (�x) ∈ Y . �

The selection of a “good” attribute to split a set of datapoints lies at the heart of the decision
tree learner as it determines the size of the resulting tree and, hence, how well the tree generalizes
the training data. This problem is best understood in the simpler single-label setting in which
datapoints are labeled with one out of two possible labels, say 0 or 1. To obtain a small decision
tree, the learning algorithm should split samples such that the resulting subsamples are as pure
as possible (i.e., one subsample contains as many datapoints as possible labeled with 0, whereas
the other subsample contains as many datapoints as possible labeled with 1). This way, the learner
will quickly arrive at samples that contain a single label and, hence, produce a small tree.

The quality of a split can be formalized by the notion of a measure, which, roughly, is a measure μ
mapping pairs of sets of datapoints to a set R that is equipped with a total order � over elements of
R (usually, R = R≥0 and � is the natural order over R). Given a set S to split, the learning algorithm
first constructs subsets Si and S¬i for each available attribute i and evaluates each such candidate
split by computing μ (Si , S¬i). It then chooses a split that has the least value.

In the single-label setting, information theoretic measures, such as information gain (based on
Shannon entropy) and Gini, have proven to produce successful classifiers (Hastie et al. 2001). In the
case of multi-label classifiers, however, finding a good measure is still a matter of ongoing research
(e.g., see Tsoumakas and Katakis (2007) for an overview). Both the classical entropy and Gini mea-
sures can be adapted to the multi-label case in a straightforward way by treating datapoints with
multiple labels as multiple identical datapoints with a single label. More precisely, the main idea
is to replace each multi-labeled datapoint (�x , {λ1, . . . , λk }) with the datapoints (�x , λ1), . . . , (�x , λk)
and proceeds as in classical decision tree learning.

We now briefly sketch these modifications, including a modification described by Clare and King
(2001). In all cases, we fix R = R and let � be the natural order over R.

Entropy. Intuitively, entropy is a measure for the amount of “information” contained in a
sample; the higher the entropy, the higher the randomness of the sample. Formally, one
defines the entropy of a sample S with multiple labels by

e (S) = −
∑
λ∈L

pλ · log2 pλ ,

where pλ is the relative frequency of the label λ defined by

pλ =
|{(�x ,Y) ∈ S | λ ∈ Y }|∑

(�x,Y)∈S |Y |
.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:16 D. Neider et al.

The corresponding measure μe (S1, S2) is the weighted average of e (S1) and e (S2).

Gini. One can think of Gini as the probability of making a classification error if the whole
sample is uniformly labeled with a randomly chosen label. Formally, for a sample S with
multiple labels, one defines Gini by

д(S) =
∑

λ�λ′ ∈L

pλ · pλ′,

where pλ is again the relative frequency of the label λ (see above). The Gini measure
μд (S1, S2) is the weighted average of д(S1) and д(S2).
pq-entropy. The modification of entropy by Clare and King (2001) accounts for multiple
labels by considering for each label the probability of being labeled with λ (i.e., the relative
frequency of λ) as well as probability of not being labeled with λ. More precisely, for a
sample S with multiple labels, Clare and King define

pq-e = −
∑
λ∈L

pλ · log2 pλ + qλ · log2 qλ ,

where pλ is the relative frequency of the label λ and qλ = 1 − pλ . As measure μ pq-e (S1, S2),
Clare and King use the weighted average of pq-e(S1) and pq-e(S2).

However, all of these approaches share the disadvantage that the association of datapoints to
sets of labels is lost. As a consequence, measures can be high even if all datapoints share a common
label; for instance, such a situation occurs for S = {(�x1,Y1), . . . , (�xm ,Ym)} with {λ1, . . . , λ� } ⊆ Yi

for every i ∈ {1, . . . ,m}. Therefore, one would ideally like to have a measure that maps to 0 if all
datapoints in a set share a common label and to a value strictly greater than 0 if this is not the case.
We now present a measure, based on the combinatorial problem of finding minimal hitting sets,
that possesses this property. To the best of our knowledge, this measure is a novel contribution
and has not been studied in the literature.

For a set S of datapoints, a set H ⊆ L is a hitting set if H ∩ Y � ∅ for each (�x ,Y) ∈ S . Moreover,
we define the measure hs(S) = minhitting set H |H | − 1 (i.e., the cardinality of a smallest hitting set
reduced by 1). As desired, we obtain hs(S) = 0 if all datapoints in S share a common label and
hs(S) > 0 if this is not the case. When evaluating candidate splits, we would prefer to minimize
the number of labels needed to label the datapoints in the subsets; however, if two splits agree
on this number, we would like to minimize the total number of labels required. Consequently, we
propose R = N × Nwith (n,m) � (n′,m′) if and only ifn < n′ orn = n′ ∧m ≤ m′, and as measures

μhs (S1, S2) =
(
max {hs(S1), hs(S2)}, hs(S1) + hs(S2)

)
.

Unfortunately, computing hs(S) is computationally hard. Therefore, we implemented a standard
greedy algorithm (the dual of the standard greedy set cover algorithm (Chvatal 1979)), which runs
in time polynomial in the size of the sample and whose solution is at most logarithmically larger
than the optimal solution.

5 A SYNTHESIS ENGINE FOR LINEAR INTEGER ARITHMETIC

We now describe an instantiation of our framework (described in Section 3) for synthesizing func-
tions expressible in linear integer arithmetic against quantified linear integer arithmetic specifica-
tions.

The counterexample input finder (Phase 1) and the computing of labels for counterexample
inputs (Phase 3) are implemented straightforwardly using an SMT solver (note that the respective
formulas will be in quantifier-free linear integer arithmetic). The Isolate() function works over a
domain D ∪ {⊥}; we can implement this by choosing a particular element ĉ in the domain and

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:17

modeling every term using a pair of elements, one that denotes the original term and the second
that denotes whether the term is ⊥ or not, depending on whether it is equal to ĉ . It is easy to
transform the formula now to one that is on the original domain D (which in our case integers)
itself.

5.1 Expression Synthesizer

Given an input �p, the expression synthesizer has to find an expression that works for �p. Our im-
plementation deviates slightly from the general framework.

In the first phase, it checks whether one of the existing expressions in the global set E already
works for �p. This is done by calling the label finder (as in Phase 3). If none of the expressions in
E work for �p, then the expression synthesizer proceeds to the second phase, where it generates a

new synthesis problem with specification ∀�x . ψ↓�p (f̂ , �x) according to Phase 2 of Section 3, whose

solutions are expressions that work for �p. It solves this synthesis problem using a simple CEGIS-
style algorithm, which we sketch next.

Let∀�x .ψ (f , �x) be a specification with a function symbol f : Zn → Z , which is to be synthesized,
and universally quantified variables �x = (x1, . . . ,xm). Our algorithm synthesizes affine expressions
of the form (

∑n
i=1 ai · yi) + b where y1, . . . ,yn are integer variables, ai ∈ Z for i ∈ {1, . . . ,n}, and

b ∈ Z. The algorithm consists of two components, a synthesizer and a verifier, which implement
the CEGIS principle in a similar but simpler manner as our general framework. Roughly speaking,
the synthesizer maintains an (initially empty) set V ⊆ Zm of valuations of the variables �x and
constructs an expression H for the function f that satisfies ψ at least for each valuation in V (as
opposed to all possible valuations). Then, it hands this expression over to the verifier. The task of
the verifier is to check whether H satisfies the specification. If this is the case, then the algorithm
has identified a correct expression, returns it, and terminates. If this not the case, then the verifier
extracts a particular valuation of the variables �x for which the specification is violated and hands
it over to the synthesizer. The synthesizer adds this valuation toV , and the algorithm iterates. The
synthesizer and verifier are implemented as follows.

Synthesizer. The synthesizer maintains a finite setV ⊆ Zm of valuations of the universally quan-
tified variables �x and constructs expressions for the synthesis function f that satisfies ψ at least
on all valuations in V . To this end, the synthesizer first constructs a template expression t (�a,b, �y)
of the form described above, but where �a = (a1, . . . ,an), and b are now variables (note that this
expression is not linear due to the terms ai · yi). Then, it constructs the formula

φ (�a,b) :=
∧
�v ∈V

ψ (t/f , �v/�x).

Note that φ is a formula in linear integer arithmetic, since all occurrences of variablesyi have been
replaced with integers values. Finally, the algorithm uses an SMT solver to obtain valuations of
�a and b that satisfy φ; note that φ is guaranteed to be satisfiable, since we use the synthesizer in
a special setting, namely to synthesize expressions for a single-point definable specification. The
synthesizer substitutes the satisfying assignment for �a and b in the template t and returns the
resulting expression H .

Verifier. Given an expressionH conjectured by the synthesizer, the verifier has to check whether

φ := ψ (H/f , �x)

is valid. To this end, the verifier turns this validation problem into a satisfiability problem by
querying an SMT solver whether ¬φ is satisfiable. If ¬φ is satisfiable, then the verifier extracts a
satisfying assignment �v for the universal quantified variables and returns �v to the synthesizer. If¬φ

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:18 D. Neider et al.

is unsatisfiable, then an expression satisfying the specification has been found and the synthesizing
algorithm returns it.

5.1.1 Further Heuristics. Our implementation for synthesizing expressions for linear arithmetic
constraints has several other heuristics that we briefly describe.

First, some technical aspects of the counterexample finder and the label finder are implemented
a bit differently than explained above. We use array theories and uninterpreted functions to extract
the counterexample point from the specification and the hypothesis (instead of using the Isolate
transformer), and to check if a point works for an expression.

The counterexample finder prioritizes data-points that have a single classification, and returns
multiple counterexamples in each round, to facilitate better learning.

We also maintain an initial set of enumerated expressions, and dovetail through them lazily
before invoking the expression synthesizer. These initial expressions has coefficients between −1
and 1 for all the variables. If none of these expression work for the counterexample point, then the
expression synthesizer is invoked.

There are also phases in our algorithm where, when examining an enumerated expression, we
would ask a constraint solver whether this expression would work for any input (not necessarily
the counterexample input) and if possible, add the new point and the expression to the sample.
Further, when we do find a unique expression that works for the counterexample, we ask the
constraint solver for more points for which this expression would work, and add them as extra
samples. When multiple expressions work for a point, we strive to find another point for which
only one of them works (to avoid considering spurious expressions) and add them to the sample.

The expression synthesizer also uses a heuristic motivated by a geometric intuition. We would
expect the correct expression for a point to work also on points neighboring it (unless it lies close
to the boundary of a piece-wise region). To synthesize a d-dimension expression, we need at least
(d + 1) points that lie on that plane. If (y1,y2, . . .yd) is a point, then it is highly likely that the
“correct” expression for the point would also work for its immediate neighboring points in each
dimension, namely (y1 + 1,y2 . . .yd), (y1,y2 + 1 . . .yd), . . . (y1,y2, . . . ,yd + 1). We constrain the
SMT solver to synthesize a d-dimensional expression with integer coefficients that works for all
these (d + 1) points. If no such expression exists, then we resort to synthesizing an expression only
for the counterexample.

5.2 Predicate Synthesizer

Since the decision tree learning algorithm (which is our classifier) copes extremely well with a
large number of attributes, we do not spend time in generating a small set of predicates. We build
an enumerative predicate synthesizer that simply enumerates and adds predicates until it obtains
an adequate set.

More precisely, the predicate synthesizer constructs a set Aq of attributes for increasing values
of q ∈ N. The set Aq contains all predicates of the form

∑n
i=1 ai · yi ≤ b, where yi are variables

corresponding to the function arguments of the function f that is to be synthesized, ai ∈ Z such
that each Σn

i=1 |ai | ≤ q, and |b | ≤ q2. If Aq is already adequate for S (which can be checked by
recursively splitting the sample with respect to each predicate in Aq and checking if all samples
at each leaf has a common label), then we stop, or we increase the parameter q by one and iterate.
Note that the predicate synthesizer is guaranteed to find an adequate set for any sample. The reason
for this is that one can separate each input �p into its own subsample (assuming each individual
variable is also an attribute) provided q is large enough.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:19

Fig. 3. Experimental results.

5.3 Classifier Learner

We use the decision tree learner described in Section 4 to learn a decision tree classifier over the
samples S and the predicatesA. In a preparatory step, the classification learner transforms each in-

put �p ∈ S to a Boolean vector �b�p : given �p and predicatesA = {p1, . . . ,pm }, it constructs the Boolean

vector �b�p = (p1 (�p), . . . ,pm (�p)) ∈ Bm . It collects all transformed inputs in a new sample S ′, where

the label of �b�p is the classification of �p. (Also here, one would clearly construct S ′ incrementally,

growing it in each iteration.)
Once the set S ′ has been created, we run the decision tree learner on S ′. The result is a tree τ ,

say with root node vr , whose inner nodes are labeled with predicates from A and whose leafs are
labeled with expression from E. The formula in linear integer arithmetic corresponding to τ is the
nested if-then-else expression to-ite(vr), where to-ite(v) for a tree nodev is recursively defined by

—if v is a leaf node labeled with expression e , then to-ite(v) := e; and
—if v is an inner node labeled with predicate p and children v1 and v2, then to-ite(v) :=

ite(p, to-ite(v1), to-ite(v2)).

The classification learner finally returns to-ite(vr).

6 EVALUATION

We implemented the framework described in Section 5 for specifications written in the SyGuS
format (Raghothaman and Udupa 2014; Alur et al. 2015). The implementation is about 5K lines in
C++ with API calls to the Z3 SMT solver (De Moura and Bjørner 2008).

We evaluated our tool parameterized using the different measures in Section 4 against 44 bench-
marks. These benchmarks are predominantly from the 2014–2016 SyGuS competitions (Alur et al.
2015, 2016a, 2016b). Additionally, there is an example from Jha et al. (2010) for deobfuscating C
code using bitwise operations on integers (we query this code 30 times on random inputs, record
its output and create an input-output specification, Jha_Obs, from it). The synthesis specification
max3Univ reformulates the specification for max3 using universal quantification, as

∀x , r1, r2,y1,y2,y3. (r1 < 0 ∧ r2 < 0) ⇒
((y1=x ∧ y2=x+r1 ∧ y3=x+r2) ∨ (y1=x+r1 ∧ y2=x ∧ y3=x+r2) ∨ (y1=x+r1 ∧ y2=x+r2 ∧ y3=x))

⇒max3(y1,y2,y3) = x .

All experiments were performed on a system with an Intel Core i7-4770HQ 2.20GHz CPU and
4GB RAM running 64-bit Ubuntu 14.04 with a 200s timeout.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:20 D. Neider et al.

Table 1 and Figure 3 compare the three measures: e-gini, pq-entropy, and hitting set. None of the
algorithms dominates. All solvers time-out on two benchmarks each. The hitting-set measure is the
only one to solve LinExpr_eq2. E-gini and pq-entropy can solve the same set of benchmarks but
their performance differs on the example* specs, where e-gini performs better, and max*, where
pq-entropy performs better.

Table 1 also compares the compositional approach to synthesis presented in this article (using
three learners, one for leaf expressions, one for predicates, and one for the Boolean expression
combining them) with a monolithic learner based on a CEGIS algorithm that synthesizes the entire
function using a constraint solver. As is evident from this table, our algorithm is more often than
not faster than the monolithic constraint-based solver. The latter times out on a large number of
specifications.

The CVC4 SMT-solver based synthesis tool (Reynolds et al. 2015) (which won the conditional
linear integer arithmetic track in the SyGuS 2015 and 2016 competitions (Alur et al. 2016a, 2016b))
worked very fast on these benchmarks, in general, but does not generalize from underspecifica-
tions. On specifications that list a set of input-output examples (marked with ∗ in Figure 3), CVC4
simply returns the precise map that the specification contains, without generalizing it. CVC4 al-
lows restricting the syntax of target functions, but using this feature to force generalization (by dis-
allowing large constants) renders them unsolvable. CVC4 was also not able to solve, surprisingly,
the fairly simple specification max3Univ (although it has the single-invocation property (Reynolds
et al. 2015)).

The general track SyGuS solvers (enumerative, stochastic, constraint-solver, and Sketch) (Alur
et al. 2015) do not work well for these benchmarks (and did not fare well in the competitions
either); for example, the enumerative solver, which was the winner in 2014 can solve only 16 of
the 44 benchmarks.

The above results show that the synthesis framework developed in this article that uses theory-
specific solvers for basic expressions and predicates, and combines them using a classification
learner yields a competitive solver for the linear integer arithmetic domain. We believe more
extensive benchmarks are needed to fine-tune our algorithm, and especially in choosing the right
statistical measures for decision-tree learning.

7 CONCLUSIONS

We have presented a novel compositional framework for synthesizing piece-wise functions over
any theory that combines three engines—a synthesizer for the simpler leaf expressions used in a
region, the predicates that can be used to define the boundaries of regions, and the Boolean expres-
sion that defines the regions themselves and chooses the leaf expressions to apply to each region.
We have shown how to formulate automatically the specifications for synthesizing leaf expres-
sions and predicate expressions from the synthesis specification, and developed generic classifica-
tion algorithms for learning regions and mapping them to expressions using decision-tree based
machine-learning algorithms.

One future direction worth pursuing is to build both specific learning algorithms for synthesis
problems based on our framework, as well as build general solutions to synthesis (say for all
SyGuS specifications). One piece of work that has emerged since the publication of our result is
the EUSolver (Alur et al. 2017), which can be seen as an instantiation of our framework, using
enumerative techniques to synthesize both leaf expressions and predicates, and using a decision-
tree classifier similar to ours for finding and mapping regions to expressions. The EUSolver has
performed particularly well in the SyGuS 2016 (Alur et al. 2016b) competition, winning several
tracks, and in particular working well for the class of ICFP benchmark synthesis challenge
problems, solving a large proportion of them for the first time. We also note that the original
winner for the ICFP benchmarks (in the competition held in 2013 (Akiba et al. 2013)) also used

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:21

Table 1. Experimental Performance of the Measures e-gini, pq-entropy, Hitting Set,

and the Constraint Solver

Benchmarks

e-gini pq-entropy Hitting set Constr. solver

Rounds Time Rounds Time Rounds Time Time

Jha_Obs 1 0.2 1 0.2 1 0.2 0.5

LinExpr_eq1 — TO — TO — TO TO

LinExpr_eq1ex 9 3.6 10 3.3 10 3.2 122.9

LinExpr_eq2 — TO — TO 31 36.8 2.3

LinExpr_eq2ex 48 94.5 49 93.6 50 93.1 1.0

LinExpr_inv1_ex 39 11.5 39 10.9 38 11.1 0.1

array_search_2 7 0.6 7 0.6 6 0.6 2.6

array_search_3 7 1.3 7 1.2 7 1.2 30.2

array_search_4 12 4.5 11 4.4 16 4.6 TO

array_search_5 19 10.7 20 10.7 16 10.6 TO

array_search_6 22 50.2 22 40.0 22 49.3 TO

array_search_7 27 174.6 22 174.0 20 170.1 TO

array_sum_2_15 5 0.3 5 0.3 5 0.3 0.7

array_sum_2_5 7 0.4 7 0.4 12 0.6 0.2

array_sum_3_15 9 0.8 9 0.7 40 15.8 43.0

array_sum_3_5 31 2.1 39 2.9 20 1.7 12.7

array_sum_4_15 28 7.0 76 26.0 44 139.5 TO

array_sum_4_5 187 169.8 105 47.2 — TO TO

max2 3 0.2 3 0.2 3 0.2 0.3

max3 8 0.4 8 0.4 8 0.4 4.7

max3Univ 9 0.7 9 0.7 8 0.7 2.5

max4 18 1.0 16 0.9 12 0.7 TO

max5 44 2.8 51 3.4 32 2.2 TO

max6 130 15.4 94 9.3 47 5.2 TO

max7 327 136.1 271 98.6 65 13.2 TO

max8 — TO — TO 140 92.0 TO

example1 3 0.3 3 0.3 3 0.3 1.2

example2 31 2.4 30 2.0 — TO TO

example3 10 3.2 12 46.8 14 65.3 2.6

example4 29 15.0 46 61.1 52 66.7 TO

example5 9 0.6 9 0.6 20 1.5 TO

guard1 3 0.3 3 0.3 3 0.3 0.2

guard2 2 0.3 2 0.3 2 0.3 0.2

guard3 4 0.4 4 0.4 4 0.4 0.3

guard4 4 0.4 4 0.4 4 0.4 0.3

ite1 4 0.7 4 0.7 4 0.7 2.8

ite2 9 0.9 11 1.0 7 0.9 1.9

plane1 1 0.2 1 0.2 1 0.2 0.1

plane2 1 0.4 1 0.4 1 0.4 0.2

plane3 1 0.4 1 0.4 1 0.4 0.2

s1 5 0.3 5 0.3 5 0.3 0.1

s2 2 0.2 2 0.2 2 0.2 0.1

s3 1 0.2 1 0.2 1 0.2 0.1

Times are given in seconds. “TO” indicates a timeout of 200s.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

10:22 D. Neider et al.

a compositional approach to synthesis that discovered leaf expressions individually for points
and then combined them. This experimental evidence suggests that the compositional framework
outlined in this article is likely a more efficient approach to synthesis of piece-wise functions.

Another interesting future direction is to extend our framework beyond single-point defin-
able/refutable specifications, in particular, to bounded point definable/refutable functions. When
synthesizing inductive invariants for programs, the counterexamples to hypothesized invariants
are not single counterexamples, but usually involve two counterexamples connected with an im-
plication (see the model of ICE learning (Garg et al. 2014b)). Extending our framework to synthesize
for such specifications would be interesting. (Note that in invariants, the leaf expressions are fixed
(T/F), and only the predicates separating regions need to be synthesized.)

In summary, the synthesis approach developed in this article brings a new technique, namely
machine learning, to solving synthesis problems, in addition to existing techniques such as enu-
meration, constraint-solving, and stochastic search. Leaf expressions and predicates belong to
particular theories that have complex semantics, and are hence best synthesized using dedicated
synthesis procedures. However, combining the predicates to form regions and mapping regions
to particular expressions can be seen as a generic classification problem that can be realized by
learning Boolean formulas, and is independent of the underlying theories. By using a learner of
Boolean formulas (decision trees in our setting), we can combine theory-specific synthesizers for
leaf expressi ons and predicates to build efficient learners of piece-wise functions.

ACKNOWLEDGMENTS

A shorter version of this article was presented at the conference TACAS (Neider et al. 2016). This
material is based upon work supported by the National Science Foundation under Grants No.
1138994 and No. 1527395.

REFERENCES

Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki Kataoka, Naohiro Takahashi, Michał Moskal, and Nikhil

Swamy. 2013. Calibrating research in program synthesis using 72,000 hours of programmer time. MSR, Redmond, WA,

Tech. Rep (2013).

Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusu-

dan, Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-

Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis. In Dependable Software Systems Engineer-

ing. NATO Science for Peace and Security Series, D: Information and Communication Security, Vol. 40. IOS Press,

1–25.

Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. 2013. Automated grading of DFA

constructions. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’13). IJCAI/AAAI.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2016a. Results and analysis of SyGuS-Comp15.

Electro. Proc. Theoret. Comput. Sci. 202 (2016), 326.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2016b. SyGuS-Comp 2016: Results and analysis.

Electro. Proc. Theoret. Comput. Sci. 229 (2016), 178202.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enumerative program synthesis via divide and con-

quer. In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 319–336.

Rajeev Alur and Nimit Singhania. 2014. Precise piecewise affine models from input-output data. In Proceedings of the Inter-

national Conference on Embedded Software (EMSOFT’14). ACM, 3:1–3:10.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2015. The SMT-LIB Standard: Version 2.5. Technical Report. Department

of Computer Science, The University of Iowa. Retrieved from http://www.SMT-LIB.org.

Alberto Bemporad, Andrea Garulli, Simone Paoletti, and Antonio Vicino. 2005. A bounded-error approach to piecewise

affine system identification. IEEE Trans. Automat. Contr. 50, 10 (2005), 1567–1580.

Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden, and Andrew C. Myers. 2014. Using program analysis

to improve database applications. IEEE Data Eng. Bull. 37, 1 (2014), 48–59.

V. Chvatal. 1979. A greedy heuristic for the set-covering problem. Math. Operat. Res. 4, 3 (1979), 233–235.

Amanda Clare and Ross D. King. 2001. Knowledge discovery in multi-label phenotype data. In Proceedings of the Conference

on Principles and Practice of Knowledge Discovery in Databases (PKDD’01) (LNCS), Vol. 2168. Springer, 42–53.

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

http://www.SMT-LIB.org

Compositional Synthesis of Piece-Wise Functions by Learning Classifiers 10:23

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the Theory and Prac-

tice of Software 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, 337–340.

Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari. 2003. A clustering technique for the identi-

fication of piecewise affine systems. Automatica 39, 2 (2003), 205–217.

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014a. ICE: A robust framework for learning invariants.

In Proceedings of the Conference on Computer Aided Verification (CAV’14) (LNCS), Vol. 8559. Springer, 69–87.

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014b. ICE: A robust framework for learning invariants.

In Proceedings of the International Conference on Computer Aided Verification. Springer, 69–87.

Pranav Garg, P. Madhusudan, Daniel Neider, and Dan Roth. 2016. Learning invariants using decision trees and impli-

cation counterexamples. In Proceedings of the Symposium on Principles of Programming Languages (POPL’16). ACM,

499–512.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of the

Symposium on Principles of Programming Languages (POPL’11). ACM, 317–330.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical Learning. Springer, New York.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering—Volume 1 (ICSE’10). ACM, New

York, NY, 215–224.

Rong Jin and Zoubin Ghahramani. 2002. Learning with multiple labels. In Proceedings of the Conference on Neural Informa-

tion Processing Systems (NIPS’02). MIT Press, 897–904.

Svetoslav Karaivanov, Veselin Raychev, and Martin T. Vechev. 2014. Phrase-based statistical translation of programming

languages. In Proceedings of Onward!, part of SLASH’14. ACM, 173–184.

Emanuel Kitzelmann. 2010. Inductive programming: A survey of program synthesis techniques. In Proceedings of the Amer-

ican Institute of Physics (AAIP’09), Revised Papers (LNCS), Vol. 5812. Springer, 50–73.

Christof Löding, P. Madhusudan, and Daniel Neider. 2016. Abstract learning frameworks for synthesis. In Proceedings of

the Tools and Algorithms for the Construction and Analysis of Systems (TACAS’16) (LNCS), Vol. 9636. Springer, to appear.

Jedidiah McClurg, Hossein Hojjat, Pavol Cerný, and Nate Foster. 2015. Efficient synthesis of network updates. In Proceedings

of the Conference on Programming Language Design and Implementation (PLDI’15). ACM, 196–207.

Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill.

Daniel Neider, Shambwaditya Saha, and P. Madhusudan. 2016. Synthesizing piece-wise functions by learning classifiers. In

Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,

186–203.

Simone Paoletti, Aleksandar Lj. Juloski, Giancarlo Ferrari-Trecate, and René Vidal. 2007. Identification of hybrid systems:

A tutorial. Eur. J. Control 13, 2-3 (2007), 242–260.

J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.

Mukund Raghothaman and Abhishek Udupa. 2014. Language to specify syntax-guided synthesis problems. arXiv:1405.5590

(2014).

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett. 2015. Counterexample-guided

quantifier instantiation for synthesis in SMT. In Proceedings of the Conference on Computer Aided Verification (CAV’15)

(LNCS), Vol. 9207. Springer, 198–216.

RuleQuest Research. 2015. Data Mining Tools See5 and C 5.0. Retrieved from https://www.rulequest.com/see5-info.html.

Shambwaditya Saha, Pranav Garg, and P. Madhusudan. 2015a. Alchemist: Learning guarded affine functions. In Proceedings

of the Conference on Computer Aided Verification (CAV’15) (LNCS), Vol. 9206. Springer, 440–446.

Shambwaditya Saha, Santhosh Prabhu, and P. Madhusudan. 2015b. NetGen: Synthesizing data-plane configurations for

network policies. In Proceedings of the Symposium on SDN Research (SOSR’15). ACM, 17:1–17:6.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for introductory

programming assignments. In Proceedings of the Conference on Programming Language Design and Implementation

(PLDI’13). ACM, 15–26.

Armando Solar-Lezama. 2013. Program sketching. Software Tools Technol. Transfer 15, 5–6 (2013), 475–495.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial sketch-

ing for finite programs. In Proceedings of the Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS’06). ACM, 404–415.

Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An overview. Int. J. Data Warehous. Min. 3, 3

(2007), 1–13.

R. Vidal, S. Soatto, Yi Ma, and S. Sastry. 2003. An algebraic geometric approach to the identification of a class of linear

hybrid systems. In Proceedings of the 42nd IEEE Conference on Decision and Control, Vol. 1. 167–172.

Received November 2016; revised September 2017; accepted November 2017

ACM Transactions on Computational Logic, Vol. 19, No. 2, Article 10. Publication date: May 2018.

https://www.rulequest.com/see5-info.html

