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Abstract. We present a novel general technique that uses classifier
learning to synthesize piece-wise functions (functions that split the
domain into regions and apply simpler functions to each region) against
logical synthesis specifications. Our framework works by combining a
synthesizer of functions for fixed concrete inputs and a synthesizer of
predicates that can be used to define regions. We develop a theory of
single-point refutable specifications that facilitate generating concrete
counterexamples using constraint solvers. We implement the framework
for synthesizing piece-wise functions in linear integer arithmetic, com-
bining leaf expression synthesis using constraint-solving and predicate
synthesis using enumeration, and tie them together using a decision tree
classifier. We demonstrate that this approach is competitive compared
to existing synthesis engines on a set of synthesis specifications.

1 Introduction

The field of synthesis is an evolving discipline in formal methods that is seeing a
renaissance, mainly due to a variety of new techniques [1] to automatically synthe-
size small expressions or programs that are useful in niche application domains,
including end-user programming [14], filling holes in program sketches [32],
program transformations [7,18], automatic grading of assignments [2,30], synthe-
sizing network configurations and migrations [21,29], as well as synthesizing anno-
tations such as invariants or pre/post conditions for programs [12,13].

The field of machine learning [22] is close to program synthesis, especially
when the specification is a set of input-output examples. The subfield of induc-
tive programming has a long tradition in solving this problem using inductive
methods that generalize from the sample to obtain programs [19]. Machine learn-
ing, which is the field of learning algorithms that can predict data from training
data, is a rich field that encompasses algorithms for several problems, including
classification, regression, and clustering [22].

The idea of using inductive synthesis for more general specifications than
input-output examples has been explored extensively in program synthesis
research. The counterexample guided inductive synthesis (CEGIS) approach
to program synthesis advocates pairing inductive learning algorithms with a
verification oracle: in each round, the learner learns inductively from a set of
(counter-)examples and proposes an expression which the verification oracle
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checks against the specification, and augments the set of samples with a new
counterexample [32]. A majority of the current synthesis approaches rely on
counter-example guided inductive synthesis [12,13,16,32].

In this paper, we consider logical specifications for synthesis, where the goal of
synthesis is to find some expression e for a function f , in a particular syntax, that
satisfies a specification ∀�x. ψ(�x).1 We will assume that ψ is quantifier-free, that
the satisfiability of the quantifier-free theory of the underlying logic is decidable,
and that there is an effective algorithm that can produce models. The goal of this
paper is to develop a framework for expression synthesis that can learn piece-wise
functions using a learning algorithm for classifiers with the help of two other
synthesis engines, one for synthesizing expressions for single inputs and another
for synthesizing predicates that separate concrete inputs from each other. The
framework is general in the sense that it is independent of the logic used to write
specifications and the logic used to express the synthesized expressions.

A piece-wise function is a function that
partitions the input domain into a finite set
of regions, and then maps each region using
a simpler class of functions. The framework
that we build for expression synthesis is also
counterexample-guided, and proceeds in the
following fashion (see Fig. 1 on p. 195 and the
figure on the right):

– In every round, the learner proposes a piece-wise function H for f , and the
verification oracle checks whether it satisfies the specification. If not, it returns
one input �p on which H is incorrect. (Returning such a counterexample is
nontrivial; we will discuss this issue below.)

– We show that we can now use an expression synthesizer for the single input �p
which synthesizes an expression that maps �p to a correct value. This expression
synthesizer will depend on the underlying theory of basic expressions, and we
can use any synthesis algorithm that performs this task.

– Once we have the new expression, we compute for every counterexample input
obtained thus far the set of basic expressions synthesized so far that work
correctly for these inputs. This results in a set of samples, where each sample
is of the form (�p, Z), where �p is a concrete input and Z is the set of basic
expressions that are correct for �p (see points with sets of labels in figure above).
The problem we need to solve now can be seen as a multi-label classification
problem— that of finding a mapping from every input to an expression that
is consistent with the set of samples.

– Since we want a classification that is a piece-wise function that divides the
input domains into regions, and since the predicates needed to define regions
can be arbitrarily complex and depend on the semantics of the underlying
logical theory, we require a predicate synthesizer that synthesizes predicates
that can separate concrete inputs with disjoint sets of labels. Once we have

1 Note that this syntax can, of course, describe input-output examples as well.
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such a set of predicates, we are equipped with an adequate number of regions
to find a piece-wise function.

– The final phase uses classification learning, to generalize the samples to a
function from all inputs to basic expressions (see figure above). The learning
should be biased towards finding simple functions, finding few regions, or
minimizing the Boolean expression that describes the piece-wise function.

The framework above requires many components, in addition to the expres-
sion synthesizer and predicate synthesizer. First, given a hypothesis function H
and a specification ∀�x. ψ(f, �x), we need to find a concrete counterexample input
on which H is wrong. It turns out that there may be no such input point for some
specifications and even if there was, finding one may be hard. We develop a theory
of single-point definable specifications whose definition ensures such counterex-
ample inputs always exist, and a subclass of single-point refutable specifications
that reduce finding such counterexample inputs to satisfiability problems over the
underlying logical domain (which is decidable). Our framework works robustly for
the class of singe-point refutable specifications, and we show how to extract con-
crete counterexamples, how to automatically synthesize a new specification tai-
lored for any input �p to be given to the expression synthesizer, and how to evaluate
whether particular expressions work for particular inputs.

In current standard CEGIS approaches [1,32], when H and ∀�x. ψ(f, �x) are
presented, the teacher simply returns a concrete value of �x for which ¬ψ(H/f, �x)
is satisfied. We emphasize that such valuations for the universally quantified vari-
ables cannot be interpreted as inputs on which H is incorrect, and hence cannot
be used in our framework. The framework of single-point refutable specifications
and the counterexample input generation procedures we build for them is crucial
in order to be able to use classifiers to synthesize expressions.

The classifier learning algorithm can be any learning algorithm for multi-label
classification (preferably with the learning bias as described above) but must
ensure that the learned classifier is consistent with the given samples. Machine-
learning algorithms more often than not make mistakes and are not consistent
with the sample, often because they want to generalize assuming that the sam-
ple is noisy. In Sect. 4, we describe the second contribution of this paper— an
adaptation of decision-tree learning to multi-label learning that produces classi-
fiers that are consistent with the sample. We also explore a variety of statistical
measures used within the decision-tree learning algorithm to bias the learning
towards smaller trees in the presence of multi-labeled samples. The resulting
decision-tree learning algorithms form one class of classifier learning algorithms
that can be used to synthesize piece-wise functions over any theory that works
using our framework.

The third contribution of the paper is an instantiation of our framework to
build an efficient synthesizer of piece-wise linear integer arithmetic functions for
specifications given in the theory of linear integer arithmetic. We implement
the components of the framework for single-point refutable functions: to syn-
thesize input counterexamples, to reformulate the synthesis problem for a single
input, and to evaluate whether an expression works correctly for any input.
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These problems are reduced to the satisfiability of the underlying quantifier-free
theory of linear integer arithmetic, which is decidable using SMT solvers. The
expression-synthesizer for single inputs is performed using an inner CEGIS-based
engine using a constraint solver. The predicate synthesizer is instantiated using
an enumerative synthesis algorithm. The resulting solver works extremely well
on a large class of benchmarks drawn from the SyGuS 2015 synthesis competi-
tion [3] (linear integer arithmetic track) where a version of our solver fared sig-
nificantly better than all the traditional SyGuS solvers (enumerative, stochastic,
and symbolic constraint-based solvers). In our experience, finding an expression
that satisfies a single input is a much easier problem for current synthesis engines
(where constraint solvers that compute the coefficients defining such an expres-
sion are effective) than finding one that satisfies all inputs. The decision-tree
based classification, on the other hand, solves the problem of generalizing this
labeling to the entire input domain effectively.

Related Work. Our learning task is closely related to the syntax-guided syn-
thesis framework (SyGuS) [1], which provides a language, similar to SMTLib [5],
to describe synthesis problems. Several solvers following the counterexample-
guided inductive synthesis approach (CEGIS) [32] for SyGuS have been
developed [1], including an enumerative solver, a solver based on constraint solv-
ing, one based on stochastic search, and one based on the program synthesizer
Sketch [31]. Recently, a solver based on CVC4 [26] has also been presented.

There has been several works on synthesizing piece-wise affine models of
hybrid dynamical systems from input-output examples [4,6,11,34] (we refer the
reader to [24] for a comprehensive survey). The setting there is to learn an affine
model passively (i.e., without feedback whether the synthesized model satis-
fies some specification) and, consequently, only approximates the actual system.
A tool for learning guarded affine functions, which uses a CEGIS approach,
is Alchemist [28]. In contrast to our setting, it requires that the function to
synthesize is unique.

The learning framework we develop in this paper, as well as the synthesis
algorithms we use for linear-arithimetic (the outer learner, the expression syn-
thesizer and the predicate synthesizer) can be seen as abstract learning frame-
works [20] (see [23] for details).

2 The Synthesis Problem and Single-Point Refutable
Specifications

The synthesis problem we tackle in this paper is that of finding a function f that
satisfies a logical specification of the form ∀�x. ψ(f, �x), where ψ is a quantifier-free
first-order formula over a logic with fixed interpretations of constants, functions,
and relations (except for f). Further, we will assume that the quantifier-free
fragment of this logic admits a decidable satisfiability problem and furthermore,
effective procedures for producing a model that maps the variables to the domain
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of the logic are available. These effective procedures are required in order to
generate counterexamples while performing synthesis.

For the rest of the paper, let f be a function symbol with arity n representing
the target function that is to be synthesized. The specification logic is a formula
in first-order logic, over an arbitrary set of function symbols F , (including a
special symbol f), constants C, and relations/predicates P, all of which with
fixed interpretations, except for f . We will assume that the logic is interpreted
over a countable universe D and, further, and that there is a constant symbol
for every element in D. For technical reasons, we assume that negation is pushed
into atomic predicates.

The specification for synthesis is a formula of the form ∀�x.ψ(f, �x) where ψ is
a formula expressed in the following grammar (where g ∈ F , c ∈ C, P ∈ P):

Term t ::− x | c | f(t1, . . . , tn) | g(�t )

Formula ϕ ::− P (�t ) | ¬P (�t ) | ϕ ∨ ϕ | ϕ ∧ ϕ

We will assume that equality is a relation in the logic, with the standard model-
theoretic interpretation.

The synthesis problem is to find, given a specification ∀�x. ψ(f, �x), a definition
for the function f in a particular syntax that satisfies the specification. More
formally, given a subset of function symbols ̂F ⊆ F (excluding f) and a subset
of constants ̂C and a subset of relation/predicate symbols ̂P ⊆ P, the task is to
find an expression e for f that is a term with free variables y1, . . . , yn adhering
to the following syntax (where ĝ ∈ ̂F , ĉ ∈ ̂C, ̂P ∈ ̂P)

Expr t ::− ĉ | yi | ĝ(�t ) | ite( ̂P (�t ), t, t),

such that e satisfies the specification, i.e., ∀�x. ψ(e/f, �x ) is valid.

Single-Point Definable Specifications. In order to be able to define a general
CEGIS algorithm for synthesizing expressions for f based on learning classifiers,
as described in Sect. 1, we need to be able to refute any hypothesis H that does
not satisfy the specification with a concrete input on which H is wrong. We
will now define sufficient conditions that guarantee this property. The first is a
semantic property, called single-point definable specifications, that guarantees the
existence of such concrete input counterexamples and the second is a syntactic
fragment of the former, called single-point refutable specifications, that allows
such concrete counterexamples to be found effectively using a constraint solver.

A single-point definable specification is, intuitively, a specification that
restricts how each input is mapped to the output, independent of how other
inputs are mapped to outputs. More precisely, a single-point definable specifi-
cation restricts each input �p ∈ Dn to a set of outputs X�p ⊆ D and allows any
function that respects this restriction for each input. It cannot, however, restrict
the output on �p based on how the function behaves on other inputs. Many syn-
thesis problems fall into this category (see Sect. 6 for several examples taken
from a recent synthesis competition).
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Formally, we define this concept as follows. Let I = Dn be the set of inputs
and O = D be the set of outputs of the function being synthesized.

Definition 1 (Single-point Definable (SPD) Specifications). A specifica-
tion α is said to be single-point definable if the following holds. Let F be the
class of all functions that satisfy the specification α. Let g : I → O be a function
such that for every �p ∈ I, there exists some h ∈ F such that g(�p) = h(�p). Then,
g ∈ F (i.e., g satisfies the specification α).

Intuitively, a specification is single-point definable if whenever we construct
a function that maps each input independently according to some arbitrary
function that satisfies the specification, the resulting function satisfies the spec-
ification as well. For each input �p, if X�p is the set of all outputs that functions
that meet the specification map �p to, then any function g that maps every input
�p to some element in X�p will also satisfy the specification. This captures the
requirement, semantically, that the specification constrains the outputs of each
input independent of other inputs.

For example, the following specifications are all single-point definable speci-
fications over the first-order theory of arithmetic:

– f(15, 23) = 19 ∧ f(90, 20) = 91 ∧ . . . ∧ f(28, 24) = 35.
More generally, any set of input-output samples can be written as a conjunc-
tion of constraints that forms a single-point definable specification.

– Any specification that is not realizable (has no function that satisfies it).
– ∀x. (f(0) = 0 ∧ f(x+1) = f(x) + 1).

The identity function is the only function that satisfies this specification. Any
specification that has a unique solution is clearly single-point definable.

While single-point definable specifications are quite common, there are
prominent specifications that are not single-point definable. For example, induc-
tive loop invariant synthesis specifications for programs are not single-point
definable, as counterexamples to the inductiveness constraint involve two coun-
terexample inputs (the ICE learning model [12] formalizes this). Similarly, rank-
ing function synthesis is also not single-point definable.

Note that for any SPD specification, if H is some expression conjectured for
f that does not satisfy the specification, there will always be one input �p ∈ Dn

on which H is definitely wrong in that no correct solution agrees with H on �p.
More precisely, we obtain the following directly from the definition.

Proposition 1. Let ∀�x. ψ(f, �x) be a single-point definable specification and let
h : Dn → D be an interpretation for f such that ∀�x. ψ(f, �x) does not hold. Then
there is an input �p ∈ Dn such that for every function h′ : Dn → D that satisfies
the specification, h(�p) �= h′(�p).

Single-Point Refutable Specifications. While the above proposition ensures
that there is a counterexample input for any hypothesized function that does not
satisfy a single-point definable function, it does not ensure that finding such an
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input is tractable. We now define single-point refutable specifications, which we
show to be a subclass of single-point definable specifications, and for which we
can reduce the problem of finding counterexample inputs to logical satisfiability
of the underlying quantifier-free logic.

Intuitively, a specification ∀�x. ψ(f, �x) is single-point refutable if for any given
hypothetical interpretation H to the function f that does not satisfy the specifi-
cation, we can find a particular input �p ∈ Dn such that the formula ∃�x. ¬ψ(f, �x)
evaluates to true, and where the truthhood is caused solely by the interpretation
of H on �p . The definition of single-point refutable specifications is involved as
we have to define what it means for H on �p to solely contribute to falsifying the
specification.

We first define an alternate semantics for a formula ψ(f, �x ) that is para-
meterized by a set of n variables �u denoting an input, a variable v denoting an
output, and a Boolean variable b. The idea is that this alternate semantics evalu-
ates the function by interpreting f on �u to be v, but “ignores” the interpretation
of f on all other inputs, and reports whether the formula would evaluate to b.
We do this by expanding the domain to D ∪ {⊥}, where ⊥ is a new element,
and have f map all inputs other than �u to ⊥. Furthermore, when evaluating
formulas, we let them evaluate to b only when we are sure that the evaluation
of the formula to b depended only on the definition of f on �u. We now define
this alternate semantics by transforming a formula ψ(f, �x ) to a formula with
the usual semantics, but over the domain D ∪ {⊥}. In this transformation, we
will use if-then-else (ite) terms for simplicity.

Definition 2 (The Isolate Transformer). Let �u be a vector of n first-order
variables (where n is the arity of the function to be synthesized), v a first-order
variable (different from ones in �u), and b ∈ {T, F}. Moreover, let D+ = D∪{⊥},
where ⊥ �∈ D, be the extended domain, and let the functions and predicates be
extended to this domain (the precise extension does not matter).

For a formula ψ(f, �x ), we define the formula Isolate�u,v,b(ψ(f, �x )) over the
extended domain by

Isolate�u,v,b(ψ(f, �x )) := ite

(

∨

xi

xi = ⊥,¬b, Isol�u,v,b(ψ(f, �x ))
)

,

where Isol�u,v,b is defined recursively as follows:

– Isol�u,v,b(x) = x
– Isol�u,v,b(c) = c
– Isol�u,v,b(g(t1, . . . , tk)) =

ite(
∨k

i=1 Isol�u,v,b(ti) = ⊥,⊥, g(Isol�u,v,b(t1), . . . , Isol�u,v,b(tk)))
– Isol�u,v,b(f(t1, . . . , tn)) = ite(

∧n
i=1 Isol�u,v,b(ti) = u[i], v,⊥)

– Isol�u,v,b(P (t1, . . . , tk)) =
ite(

∨k
i=1 Isol�u,v,b(ti) = ⊥,¬b, P (Isol�u,v,b(t1), . . . , Isol�u,v,b(tk)))

– Isol�u,v,b(¬P (t1, . . . , tk)) =
ite(

∨k
i=1 Isol�u,v,b(ti) = ⊥,¬b,¬P (Isol�u,v,b(t1), . . . , Isol�u,v,b(tk)))
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– Isol�u,v,b(ϕ1 ∨ ϕ2) = Isol�u,v,b(ϕ1) ∨ Isol�u,v,b(ϕ2)
– Isol�u,v,b(ϕ1 ∧ ϕ2) = Isol�u,v,b(ϕ1) ∧ Isol�u,v,b(ϕ2)

Intuitively, the function Isolate�u,v,b(ψ) captures whether ψ will evaluate to
b if f maps �u to v and independent of how f is interpreted on other inputs.
A function of the form f(t1, . . . tn) is interpreted to be v if the input matches
�u and otherwise evaluated to ⊥. Functions on terms that involve ⊥ are sent
to ⊥ as well. Predicates are evaluated to b only if the predicate is evaluated
on terms none of which is ⊥— otherwise, they get mapped to ¬b, to reflect
that it will not help to make the final formula ψ evaluate to b. Note that when
Isolate�u,v,b(ψ) evaluates to ¬b, there is no property of ψ that we claim. Also,
note that Isolate�u,v,b(ψ(f, �x)) has no occurrence of f in it, but has free variables
�x, �u and v.

We can show (using a induction over the structure of the specification) that
the isolation of a specification to a particular input with b = F , when instantiated
according to a function that satisfies a specification, cannot evaluate to false (see
the full paper [23] for a proof).

Lemma 1. Let ∀�x. ψ(f, �x ) be a specification and h : Dn → D a function satis-
fying the specification. Then, there is no interpretation of the variables in �u and �x
(over D) such that if v is interpreted as h(�u), the formula Isolate�u,v,F (ψ(f, �x ))
evaluates to false.

We can also show (again using structural induction) that when the isolation
of the specification with respect to b = F evaluates to false, then v is definitely
not a correct output on �u (see the full paper [23] for a proof).

Lemma 2. Let ∀�x. ψ(f, �x ) be a specification, �p ∈ Dn an interpretation for �u,
and q ∈ D an interpretation for v such that there is some interpretation for
�x that makes the formula Isolate�u,v,F (ψ(f, �x )) evaluate to false. Then, there
exists no function h satisfying the specification that maps �p to q.

We can now define single-point refutable specifications.

Definition 3. (Single-point Refutable Specifications (SPR)). A specifi-
cation ∀�x. ψ(f, �x ) is said to be single-point refutable if the following holds. Let
H : Dn → D be any interpretation for the function f that does not satisfy the
specification (i.e., the specification does not hold under this interpretation for
f). Then, there exists some input �p that is an interpretation for �u and an inter-
pretation for �x such that when v is interpreted to be H(�u), the isolated formula
Isolate�u,v,F (ψ(f, �x )) evaluates to false.

Intuitively, the above says that a specification is single-point refutable if
whenever a hypothesis function H does not find a specification, there is a single
input �p such that the specification evaluates to false independent of how the
function maps inputs other than �p. More precisely, ψ evaluates to false for some
interpretation of �x only assuming that f(�p) = H(�p).

We can show that single-point refutable specifications are single-point
definable, which we formalize below (a proof can be found in [23]).
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Lemma 3. If a specification ∀�x. ψ(f, �x ) is single-point refutable, then it is
single-point definable.

In the following, we list some examples and non-examples of single-point
refutable specifications in the first-order theory of arithmetic:

– f(15, 23) = 19 ∧ f(90, 20) = 91 ∧ . . . ∧ f(28, 24) = 35.
More generally, any set of input-output samples can be written as a conjunc-
tion of constraints that forms a single-point refutable specification.

– ∀x.(f(0) = 0 ∧ f(x+1) = f(x) + 1 is not a single-point refutable specification
thought it is single-point definable. Given a hypothesis function (e.g., H(i) =
0, for all i), the formula f(x+1) = f(x) evaluates to false, but this involves the
definition of f on two inputs, and hence we cannot isolate a single input on
which the function H is incorrect. (In evaluating the isolated transformation
of the specification parameterized with b = F , at least one of f(x+1) and
f(x) will evaluate to ⊥ and hence the whole formula never evaluate to false.)

When a specification ∀�x. ψ(f, �x) is single-point refutable, given an expression H
for f that does not satisfy the specification, we can check satisfiability of the for-
mula ∃�u ∃v∃�x. (v=H(�u) ∧ ¬Isolate�u,v,F (ψ(H/f, �x)) ). Assuming the underlying
quantifier-free theory has a decidable satisfiability problem and can also come
up with a model, the valuation of �u gives a concrete input �p, and Lemma 2 shows
that H is definitely wrong on this input. This will form the basis of generating
counterexample inputs in the synthesis framework that we outline next.

3 A General Synthesis Framework by Learning Classifiers

We now present our general framework for synthesizing functions over a first-
order theory that uses machine-learning of classifiers. Our technique, as out-
lined in the introduction, is a counterexample-guided inductive synthesis approach
(CEGIS), and works most robustly for single-point refutable specifications.

Given a single-point refutable specification ∀�x. ψ(f, �x), the framework com-
bines several simpler synthesizers and calls to SMT solvers to synthesize a func-
tion, as depicted in Fig. 1. The solver globally maintains a finite set of expressions
E, a finite set of predicates A (also called attributes), and a finite set S of multi-
labeled samples, where each sample is of the form (�p, Z) consisting of an input
�p ∈ Dn and a set Z ⊆ E of expressions that are correct for �p (such a sample
means that the specification allows mapping �p to e(�p), for any e ∈ Z, but not to
e′(�p), for any e′ ∈ E \ Z).

Phase 1: In every round, the classifier produces a hypothesis expression H for
f . The process starts with a simple expression H, such as one that maps all
inputs to a constant. We feed H in every round to a counterexample input
finder module, which essentially is a call to an SMT solver to check whether
the formula

∃�u ∃v ∃�x. (v = H(�u) ∧ ¬Isolate�u,v,F (ψ(f, �x)))
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Fig. 1. A general synthesis framework based on learning classifiers

is satisfiable. Note that from the definition of the single-point refutable functions
(see Definition 3), whenever H does not satisfy the specification, we are guar-
anteed that this formula is satisfiable, and the valuation of �u in the satisfying
model gives us an input �p on which H is definitely wrong (see Lemma 2). If H
satisfies the specification, the formula would be unsatisfiable (by Lemma1) and
we can terminate, reporting H as the synthesized expression.
Phase 2: The counterexample input �p is then fed to an expression synthesizer
whose goal is to find some correct expression that works for �p. We facilitate this
by generating a new specification for synthesis that tailors the original specifi-
cation to the particular input �p. This new specification is the formula

ψ↓�p ( ̂f, �x) := Isolate�u,v,T (ψ(f, �x))[�p/�u, ̂f(�p)/v].

Intuitively, the above specification asks for a function ̂f that “works” for the
input �p. We do this by first finding the formula that isolates the specification
to �u with output v and demand that the specification evaluates to true; then,
we substitute �p for �u and a new function symbol ̂f evaluated on �p for v. Any
expression synthesized for ̂f in this synthesis problem maps �p to a value that
is consistent with the original specification. We emphasize that we can use any
expression synthesizer for this new specification.
Phase 3: Once we synthesize an expression e that works for �p, we feed it to the
next phase, which adds e to the set of all expressions E (if e is new) and adds �p
to the set of samples. It then proceeds to find the set of all expressions in E that
work for all the inputs in the samples, and computes the new set of samples. In
order to do this, we take every input �r that previously existed, and ask whether
e works for �r, and if it does, add e to the set of labels for �r. Also, we take the
new input �p and every expression e′ ∈ E, and check whether e′ works for �p.

To compute this labeling information, we need to be able to check, in general,
whether an expression e′ works for an input �r. We can do this using a call to an
SMT solver that checks whether the formula ∀�x. ψ↓�r (e′(�r)/ ̂f(�r), �x) is valid.
Phase 4: We now have a set of samples, where each sample consists of an input
and a set of expressions that work for that input. This is when we look upon the
synthesis problem as a classification problem— that of mapping every input in
the domain to an expression that generalizes the sample (i.e., that maps every
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input in the sample to some expression that it is associated with it). In order
to do this, we need to split the input domain into regions defined by a set of
predicates A. We hence need an adequate set of predicates that can define enough
regions that can separate the inputs that need to be separated.

Let S be a set of samples and let A be a set of predicates. Two samples
(�j, E1) and (�j′, E2) are said to be inseparable if for every predicate p ∈ A,
p(�j) ≡ p(�j′). The set of predicates A is said to be adequate for a sample S if any
set of inseparable inputs in the sample has a common label as a classification.
In other words, if every subset T ⊆ S, say T = {(�i1, E1), (�i2, E2), . . . (�it, Et)},
where every pair of inputs in T is inseparable, then

⋂t
i=1 Ei �= ∅. We require the

attribute synthesizer to synthesize an adequate set of predicates A, given the
set of samples.

Intuitively, if T is a set of pairwise inseparable points with respect to a set
of predicates P , then no classifier based on these predicates can separate them,
and hence they all need to be classified using the same label; this is possible only
if the set of points have a common expression label.
Phase 5: Finally, we give the samples and the predicates to a classification
learner, which divides the set of inputs into regions, and maps each region to a
single expression such that the mapping is consistent with the sample. A region
is a conjunction of predicates and the set of points in the region is the set of all
inputs that satisfy all these predicates. The classification is consistent with the
set of samples if for every sample (�r, Z) ∈ S, the classifier maps �r to a label in Z.
(In Sect. 4, we present a general learning algorithm based on decision trees that
learns such a classifier from a set of multi-labeled samples, and which biases the
classifier towards small trees.)

The classification synthesized is then converted to an expression in the logic
(this will involve nested ite expressions using predicates to define the regions
and expressions at leaves to define the function). The synthesized function is
fed back to the counterexample input finder, as in Phase 1, and the process
continues until we manage to synthesize a function that meets the specification.

4 Multi-Label Decision Tree Classifiers

In this section, we sketch a decision tree learning algorithm for a special case
of the so-called multi-label learning problem, which is the problem of learning
a predictive model (i.e., a classifier) from samples that are associated with mul-
tiple labels. For the purpose of learning the classifier, we assume samples to be
vectors of the Boolean values B = {F, T} (these encode the values of the various
attributes on the counterexample input returned). The more general case that
datapoints also contain rational numbers can be handled in a straightforward
manner as in Quinlan’s C5.0 algorithm [25,27].

To make the learning problem precise, let us fix a finite set L = {λ1, . . . , λk}
of labels with k ≥ 2, and let �x1, . . . , �xm denote m individual inputs (in the
following also called datapoints). The task we are going to solve, which we call
disjoint multi-label learning problem (cf. Jin and Ghahramani [17]), is
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Algorithm 1. Multi-label decision tree learning algorithm
Input: A finite set S of datapoints x ∈ B

m.

1 return DecTree (S, {1, . . . , m}).
2 Procedure DecTree (Set of datapoints S, Attributes A)
3 Create a root node r.
4 if if all datapoints in S have a label in common then
5 Select a common label λ and return the single-node tree r with label λ.
6 else
7 Select an attribute i ∈ A that (heuristically) best splits the sample S.
8 Split S into Si = {(�x, Y ) ∈ S | xi = T} and S¬i = {(�x, Y ) ∈ S | xi = F}.
9 Label r with attribute i and return the tree with root node r, left subtree

DecTree (Si, A \ {i}), and right subtree DecTree (S¬i, A \ {i}).

“Given a finite training set S = {(�x1, Y1), . . . , (�xm, Ym)} where Yi ⊆
L and Yi �= ∅ for every i ∈ {1, . . . , m}, find a decision tree classifier
h : Bm → L such that h(�x) ∈ Y for all (�x, Y ) ∈ S.”

Note that this learning problem is a special case of the multi-label learning
problem studied in machine learning literature, which asks for a classifier that
predicts all labels that are associated with a datapoint. Moreover, it is important
to emphasize that we require our decision tree classifier to be consistent with the
training set (i.e., it is not allowed to misclassify datapoints in the training set),
in contrast to classical machine learning settings where classifier are allowed to
make (small) errors.

We use a straightforward modification of Quinlan’s C 5.0 algorithm [25,27]
to solve the disjoint multi-label learning problem. (We refer to standard text on
machine learning [22] for more information on decision tree learning.) This mod-
ification, sketched in pseudo code as Algorithm alg:decisionspstree, is a recur-
sive algorithm that constructs a decision tree top-down. More precisely, given a
training set S, the algorithm heuristically selects an attribute i ∈ {1, . . . , m} and
splits the set into two disjoint, nonempty subsets Si = {(�x, Y ) ∈ S | xi = T} and
S¬i = {(�x, Y ) ∈ S | xi = F} (we explain shortly how the attribute i is chosen).
Then the algorithm recurses on the two subsets, whereby it no longer considers
the attribute i. Once the algorithm arrives at a set S′ in which all datapoints
share at least one common label (i.e., there exists a λ ∈ L such that λ ∈ Y for all
(�x, Y ) ∈ S′), it selects a common label λ (arbitrarily), constructs a single-node
tree that is labeled with λ, and returns from the recursion. However, it might
happen during construction that a set of datapoints does not have a common
label and cannot be split by any (available) attribute. In this case, it returns
an error, as the set of attributes is not adequate (which we make sure does not
happen in our framework).

The selection of a “good” attribute to split a set of datapoints lies at the heart
of the decision tree learner as it determines the size of the resulting tree and,
hence, how well the tree generalizes the training data. The quality of a split can be
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formalized by the notion of a measure, which, roughly, is a measure μ mapping
pairs of sets of datapoints to a set R that is equipped with a total order � over
elements of R (usually, R = R≥0 and � is the natural order over R). Given a set S
to split, the learning algorithm first constructs subsets Si and S¬i for each available
attribute i and evaluates each such candidate split by computing μ(Si, S¬i). It then
chooses a split that has the least value.

In the single-label setting, information theoretic measures, such as infor-
mation gain (based on Shannon entropy) and Gini, have proven to produce
successful classifiers [15]. In the case of multi-label classifiers, however, finding
a good measure is still a matter of ongoing research (e.g., see Tsoumakas and
Katakis [33] for an overview). Both the classical entropy and Gini measures can
be adapted to the multi-label case in a straightforward way by treating data-
points with multiple labels as multiple identical datapoints with a single label
(we describe these in the full paper [23]). Another modification of entropy has
been proposed by Clare and King [9]. However, these approaches share a disad-
vantage, namely that the association of datapoints to sets of labels is lost and all
measures can be high, even if all datapoints share a common label; for instance,
such a situation occurs for S = {(�x1, Y1), . . . , (�xn, Yn)} with {λ1, . . . , λ�} ⊆ Yi

for every i ∈ {1, . . . , n}.
Ideally, one would like to have a measure that maps to 0 if all datapoints in a

set share a common label and to a value strictly greater than 0 if this is not the
case. We now present a measure, based on the combinatorial problem of finding
minimal hitting sets, that has this property. To the best of our knowledge, this
measure is a novel contribution and has not been studied in the literature.

For a set S of datapoints, a set H ⊆ L is a hitting set if H ∩ Y �= ∅ for each
(�x, Y ) ∈ S. Moreover, we define the measure hs(S) = minhitting set H |H| − 1,
i.e., the cardinality of a smallest hitting set reduced by 1. As desired, we obtain
hs(S) = 0 if all datapoints in S share a common label and hs(S) > 0 if this
is not the case. When evaluating candidate splits, we would prefer to minimize
the number of labels needed to label the datapoints in the subsets; however, if
two splits agree on this number, we would like to minimize the total number
of labels required. Consequently, we propose R = N × N with (n,m) � (n′,m′)
if and only if n < n′ or n = n′ ∧ m ≤ m′, and as measures μhs(S1, S2) =
(max {hs(S1), hs(S2)}, hs(S1)+hs(S2)). As computing hs(S) is computationally
hard, we implemented a standard approximate greedy algorithm (the dual of
the standard greedy set cover algorithm [8]), which runs in time polynomial in
the size of the sample and whose solution is at most a logarithmic factor of the
optimal solution.

5 A Synthesis Engine for Linear Integer Arithmetic

We now describe an instantiation of our framework (described in Sect. 3) for
synthesizing functions expressible in linear integer arithmetic against quantified
linear integer arithmetic specifications.

The counterexample input finder (Phase 1) and the computing of labels for
counterexample inputs (Phase 3) are implemented straightforwardly using an
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SMT solver (note that the respective formulas will be in quantifier-free linear
integer arithmetic). The Isolate() function works over a domain D∪{⊥}; we can
implement this by choosing a particular element ĉ in the domain and modeling
every term using a pair of elements, one that denotes the original term and the
second that denotes whether the term is ⊥ or not, depending on whether it is
equal to ĉ. It is easy to transform the formula now to one that is on the original
domain D (which in our case integers) itself.

Expression Synthesizer. Given an input �p, the expression synthesizer has to
find an expression that works for �p. Our implementation deviates slightly from
the general framework.

In the first phase, it checks whether one of the existing expressions in the
global set E already works for �p. This is done by calling the label finder (as in
Phase 3). If none of the expressions in E work for �p, the expression synthesizer
proceeds to the second phase, where it generates a new synthesis problem with
specification ∀�x. ψ↓�p(f̂ , �x) according to Phase 2 of Sect. 3, whose solutions are
expressions that work for �p. It solves this synthesis problem using a simple
CEGIS-style algorithm, which we sketch next.

Let ∀�x. ψ(f, �x) be a specification with a function symbol f : Zn → Z, which
is to be synthesized, and universally quantified variables �x = (x1, . . . , xm). Our
algorithm synthesizes affine expressions of the form (

∑n
i=1 ai · yi) + b where

y1, . . . , yn are integer variables, ai ∈ Z for i ∈ {1, . . . , n}, and b ∈ Z. The algo-
rithm consists of two components, a synthesizer and a verifier, which implement
the CEGIS principle in a similar but simpler manner as our general framework.
Roughly speaking, the synthesizer maintains an (initially empty) set V ⊆ Z

m

of valuations of the variables �x and constructs an expression H for the function
f that satisfies ψ at least for each valuation in V (as opposed to all possible
valuations). Then, it hands this expression over to the verifier. The task of the
verifier is to check whether H satisfies the specification. If this is the case, the
algorithm has identified a correct expression, returns it, and terminates. If this
not the case, the verifier extracts a particular valuation of the variables �x for
which the specification is violated and hands it over to the synthesizer. The
synthesizer adds this valuation to V , and the algorithm iterates.

Predicate Synthesizer. Since the decision tree learning algorithm (which is
our classifier) copes extremely well with a large number of attributes, we do
not spend time in generating a small set of predicates. We build an enumerative
predicate synthesizer that simply enumerates and adds predicates until it obtains
an adequate set.

More precisely, the predicate synthesizer constructs a set Aq of attributes
for increasing values of q ∈ N. The set Aq contains all predicates of the form
∑n

i=1 ai·yi ≤ b, where yi are variables corresponding to the function arguments of
the function f that is to be synthesized, ai ∈ Z such that each Σn

i=1|ai| ≤ q, and
|b| ≤ q2. If Aq is already adequate for S (which can be checked by recursively
splitting the sample with respect to each predicate in Aq and checking if all
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Fig. 2. Experimental results

samples at each leaf has a common label), we stop, else we increase the parameter
q by one and iterate. Note that the predicate synthesizer is guaranteed to find
an adequate set for any sample. The reason for this is that one can separate
each input �p into its own subsample (assuming each individual variable is also
an attribute) provided q is large enough.

6 Evaluation

We implemented the framework described in Sect. 5 for specifications written in
the SyGuS format [1]. The implementation is about 5 K lines in C++ with API
calls to the Z3 SMT solver [10].

The implementations of the LIA counter-example finder and the expression
synthesizer use several heuristics. The counter-example finder prioritizes data-
points that have a single classification, and returns multiple counterexamples in
each round. The expression synthesizer uses a combination of enumeration (for
small degree expressions) and constraint-solving (for larger ones), and prioritizes
returning expressions that work for multiple neighboring inputs. More details are
in the extended version [23].

We evaluated our tool parameterized using the different measures in Sect. 4
against 43 benchmarks, and report here a representative 24 of them. These
benchmarks are predominantly from the 2014 and 2015 SyGuS competition [1,3].
Additionally, there is an example from [16] for deobfuscating C code using bitwise
operations on integers (we query this code 30 times on random inputs, record its
output and create an input-output specification, Jha Obs, from it). The synthe-
sis specification max2Univ reformulates the specification for max2 using universal
quantification, as

∀x, r, y1, y2. (r < 0) ⇒ ((y1=x∧y2=x+r)∨(y1=x+r∧y2=x)) ⇒ max(y1, y2) = x.

All experiments were performed on a system with an Intel Core i7-4770HQ
2.20 GHz CPU and 4 GB RAM running 64-bit Ubuntu 14.04 with a 200 seconds
timeout. The results of the 24 representative benchmarks are depicted in Fig. 2.

Figure 2 compares three measures: e-gini, pq-entropy and hitting set
(pq-entropy refers to the measure proposed by Clare and King [9]). All solvers
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time-out on two benchmarks each. None of the algorithms dominates. The
hitting-set measure is the only one to solve LinExpr eq2. E-gini and pq-entropy
can solve the same set of benchmarks but their performance differs on the
example* specs, where e-gini performs better, and max* where pq-entropy per-
forms better.

The CVC4 SMT-solver based synthesis tool [26] (which won the linear integer
arithmetic track in the SyGuS 2015 competition [3]) worked very fast on these
benchmarks, in general, but does not generalize from underspecifications. On
specifications that list a set of input-output examples (marked with * in Fig. 2),
CVC4 simply returns the precise map that the specification contains, without
generalizing it. CVC4 allows restricting the syntax of target functions, but using
this feature to force generalization (by disallowing large constants) renders them
unsolvable. CVC4 was also not able to solve, surprisingly, the fairly simple spec-
ification max2Univ (although it has the single-invocation property [26]).

The general track SyGuS solvers (enumerative, stochastic, constraint-solver,
and Sketch) [1] do not work well for these benchmarks (and did not fare well
in the competition either); for example, the enumerative solver, which was the
winner in 2014 can solve only 15 of the 43 benchmarks.

The above results show that the synthesis framework developed in this paper
that uses theory-specific solvers for basic expressions and predicates, and com-
bines them using a classification learner yields a competitive solver for the linear
integer arithmetic domain. We believe more extensive benchmarks are needed
to choose the right statistical measures for decision-tree learning.
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